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1. DEPINITIONS: The sat F from which the né entries of an nxm matrix

H are drawn we will call the set of alsmgn f M. For conclae-
ness, by ation 53 we will mean,
according to contex ar & parmatation on F or the transform=

[]
ation af M to a utrix Hp that 1t induces For axam
o . ple: takln
Fz210,1,2,3% and M a3 shown, p= (01} induces the follewing .
transformation:
=4

e st Note that the aatrles of ¥ occour with-

Irt“-.i-lq’-".:!' .ﬂ'?;!-_'i in & lattice of aguares. We will con-
S'Z-t.‘i-u g BRI tinue to view mairices in this way,
[al_:};u*; z(alila whather or not the lattlce is anown
|_.',;F'_i_’-§=2- a2z sxplicitly.

We now substitute for the elaments of M the four triangular half-
squares (which we will call simply triangles) in this order:

‘ ‘ r L. The dlamond=like matrix D at left
2 I z 3 13 the result of this substitutlon.

2.F4CT: D has the following remarkabls proparties:

(1) Any matrix (il.e., gecmetric Cigure) cbtained
from D by & pumhatlm of elements 1a alther

symmetric or f'—complamen (black and white
o interchan :Ln.gi under some rigﬁ motion of the
squars, (Exsmples st left.)

{2) Any matrix obtalned from D by a EE'EEF&E}
parmmutation (cne of rows and of colu=ns 5 also
symsetric or self-complamantaTy.

{3) The same is true for permutations of guadrants
D (o) {the subsquares obtained by bisecting a square
along each median).

{4) The same is trus for any combinatlon of the
{ three sorts of permutations mantioned above.

Pro=1d

The author, an artist, discovered these properties in 1975 while
devising [ @5 to use in an abstract painting. This monograph
is an sttempt to explain them and to view D in 1ts proper setting.

« DEFINITIONS: A gﬂggj;ﬁ ﬂﬁ“ is one whose elements are geo-
4 metric figures -- speclfiic y Subsets (such as triangles) of
the squars. ({We will neglect, when convenient, sets of zaro ares
esecurring as subset boundaries.) A f is a x4 four-
slement matrix each of whose slements occurs four times as an entry.
A diamond is & foursquare whose elements are triangles.

*In a general "four-element" matrix, all entries might be identical,
put would still be regarded as dyswn from a set of four.
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L]

The gecmetric ﬁrnpsrt)esinr a diamond arlse Tium :he i?:era:tien
of the gecmetric nropertles of 1ts ahatract rugture ta struct-
ure &% g rectangular array ol distinctively EHEEIEE, it othar-
wise undescribed, elements) with the peometirl: nroperties of its
slamante. We shall describe toe properties of structure and of
elements that make D work. (Keep 10 mind that afery entry of a
square geometric matrix, in being carried to enother positlon
under 8 rigid motion of the SqUATe, also undergoas tmthmntian.
Hance a rigld motion of the matrix z:ay induce B pariuta.}on of
1ts elements.} In the cass of the matrices we will consider,
interesting results occur when we andow them with algebraic, as
wall as geometrlc, propertles, by regarding thelr elements as
those af a finite fleld.

k.FACT: In persuting the rows and columrs of M, the following (pair=-

wize structurally incongruent -- see 5 )} abstract structures arisae:
abecd abed abed abcd abed
debe bade cdab cdab bade
cdaebh deba dcba bade cdahb
beade ecdab bade deba decba

rate thet the last structure, with first row and first coclu=n in
standard order, may be rega:r-écd as that of the (unlabeled) Cayley
table of the four group. In fact, since they result from row-
coluszn permutations, all five of the structures are those of tables
of the four group. Thus the properties of D may be regarded as
properties of this group, one we will encounter often, in

varlous gulses.

5,DEFIRITICNS: Surpose the elements of & matrix F are drawn from
{a,bye,d3 . The set of boundary lines (subsets of the matrix
1:1;%1@; separsting within the matrix peabers of ix,y} from those
o wi , where {x,y,2,w}=18,b,c,d}, is called the z-y block
of P, or L{x,y). {ﬁutn: Li{x,¥)= L{z,w).) Thus any four=

element matrix has a set of three block maps, one or more of whick
may be empty maps. The sekt of maps is uaﬁmi pecause 1t describes
whot we have beer calling the abstract structure of the matrix;
the set, like the structure, is unchanged by permutations of ele-
ments. (On the other nand, the ordered triple (L{a,b), L{a,c), L{b,e))
descyibes the matrix closei;r.“' } Four-slement matrices A and B

are if some rigid motion thanges A's maps
to Ba, We represent the field F of order four as the set
F=1{0,1,2,31 with these cperatiocnsi

Thae Bix,y) of a +|o|11 v|o113
mezber F o set of all oo (S W ‘emnaR
nim matriced F), where x,y 1|jfredz 1|ojiLd
nﬂdiﬂinntmbaranrrristhi zlzao 1 2{ozdi
nxm 0,1 matrix with its 1'a whera 3ja3z ' 3ol T

P has x's or y's, 1ts O's else-
whare.

L2
If map lines on the edges of the matrix, as well as the interior
are ineluded, then the triple describes the matrix precisely. ’

538 (3 o)




Diamond Theory, 1976 preprint by Steven H. Cullinane

&, THEOREY (fundamental):

bination of block matrices:
The proof 1z easy? E

/01213
1.8 5D
2101
3810

7.DEPINITICHS: The

OO

changing 1ts O's an
sqliare 1s its point-set complement.) A square 0,1 matrix {or a
subset of the square) is regular if at least one of the followin
motiona of the matrix {the square) leaves the matrix (the subset
unshanged or changes it to its cocplement: H, a flip abouf the

horizontal median;

Xamples

Evary member P of (F} 15 a linear com-

F=1B(2,3)+ 2B(1,3)+ 3B(1,2).

011} 0101 o é é o
g1 3 181d 1 1
100}*1 o101 (™Mi1o001
100 1010 6110

co of a 0,1 mat is obtained by inter-
E wa complement of a subset of the

V, a flip about the vertical medisn; R%, 180

Vv
degree rotation about the center. A mal block map is one syu-
metric under H, V, and R=.
whose lines extends all the way across the matrix. (Exsmoles below.)

A normal (plaid) four-element matrix is one .
whose ock maps are all normal (all plaid).

(We take the empty map to be plaid.)

is an nxm, n even, noneapty map
s elther plald and consilsts of 1 line

A bagls ca
that 1 1

er of 2 parallel lines

whose center is that ni the

The m of two ma
difference, 1

A plaid map 1s & normal cne e=ach of

or 15 a rectangle roreal, plaid

matrix. non=plaid

AyB 13 their symmetric

L&, their union minus their intersection.
8.FACT: A sum of normal (of plaid) maps is normal (plaid).
9,FPACT: Each block map of a four-element matrix is the sum of the
other two block maps.
10.THEOREM; The set of (plaid) basis maps of nmn, n even, normal four-
element matrices is a basis for the vector space of the matrices’
normal (plsid) maps. ( We take the scalars of the space to be O and
with products of thase and maps the obvious cnes.)
learly the besis maps, normal or plaid, are linearly in-

(5ea

l from P

PROOP: C

dependent. _Let n=:2m. By 1
thera are me=+ 1 narmil bhasis
there are 2 to the m

a quadrant

6 and 1k&.)

nduction on m, one can easlily shaow
maps. They span the space because

+ 1 sums (all normal) of basis maps and the
same number of normal maps (since each normal map is determined by

of a block matrix -- or lts complement =-- and by the

presence or absence of each median line). And clearly the plaid

basis meps span the space of plaid maps.
Suppose that in the five structures in part 4, we substi-

tute in sny order the following geometric elements:

11.RHOTE:

The resulting figures look r

superimposed, ‘but then they
orderly flgures.

*First show that P=18(0,1)+ 2B(0,2)4 38(0,3). The form above
for P was chosen so that esch block matrix, like each block =&P,

would be the sum of the other two.
®* There are 57 warieties of normel fouraquares,

cOngrasnos:

ather unimpressive until they are
yleld a variety of surprisingly

modula structural

21 plaid, 36 non-plaid.
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For exasple:

P~ » ¢ “apPd e P?P9¢ ¢
a Pl » 5 ({ew™)» e¢de@9
el b= Prwd JCI€
(o) wil & ¢V H

The following theorem explains this behawior.

12, THECREM: Let A = 1(0,0),(1,1),(2,2),(3,3)
= (1,00, (0,1),(3,2),(2,3)
{EE!D}rE311}${012}r(113%

3,0),(2,1),(1,2),(0,3

wWhen two members of Mpn(F) are superimposed, we may regard the
rasult, using the above sets, &% a matrix with alsments A,B,C,D,
since whan two entrles are superipposed, t fall into amti;r
ona of thess seta, This new matrix fs normal (plaid) if the
superimposed matrices are both normal (plaid),

FROOF: Table 1 at left below summarizes how the old entrles
combine to produce the nmew. It strongly suggeats

o1 T3 that we replace letters with numbers; since this has
slAB & B ne effect on the truth or falsity of the theorem, we
L& a D C do so, obtaining table 2. Thus the superimposition
e DA B of mniricn: is described by their matrix addition.
sIDc B A We complete this proof, therefors, by stating and

rable 1 proving & new theoram.
+|o ! Z 3 13 THEOREM: A sum of normal (plaid) members of MnlF)
ala 1 23 1s normal (plaid)-.

il a3 2 PROCF: Since every normal (plald) member of Ma(®)

2lz 201 iz & linesr combination of normal (plaid) block
matrices, it suffices to prove ‘he theorem for these.

3|3 L1 © phe following theorem does so, completing the preocf

Table 2 of this theorem and therefores of the one above.

1%.THBOREM: The x-y block map of the sum of two block matrices is
the sum af thelr x-y block maps.
PROCF: Eaech 0,1 matrix has one empty and two identical
maps -- the .‘m{tw showlng the lines ssparating O's from 1's.

The table at right shows how oo 41 /0 11
:Elj:ai:g:s.?::;::;e:ﬁda%;usﬁ:he:} Y o o1 1/0 11
that the theorem is true. /o | /0 11 00 0/1

11|11 1/0 021 00

lote that members of Mp(F), regarded as ordered triples of block
maps, may bas added by adding the triples elementwise.
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15.THEOREM: The normal (pleid) member
SE RUCLIAE AErTiGE ey Fi e ii 2;;&3(?) are & linear algebra
iﬂ(ﬂ?: .ﬁ besls matrix is & 0,1 matrix whose nonempty maps are
8als maps. By 10, and 13, each normeél (plald) nember of Mp(F)
iz & linear combination of normal (plald) basis matrices. To see
that products of such matrices are normpal (plaid}, note that the
srodust of any two 1s the zerc matrix unless the nonempty maps of
the factor on the right are each the herizontal median line, or
those of the left factor, the wvertical. In such cases, the product
{5 easily shown to be plaid, Therefore the normal (plaid) =atrices
of Mp(F) are closed under multiplicaticn. We have shown that they
are closed under additien, and clearly they are closed under mul -
iplication by scalars. To show singularity of each normal matrix Py
express it @s a linear combination of basis matrices and multiply
it on the left by the lun 0,1 vector whose 1's sre the central
four entries, The result is the zero vector, so F has &
nontrivial rmll space.

16, DEFINITIONS: 4 regularity is one of the followln six propertiess
syrmetry or self-complementarity under H, V, or Re. & Fegular
tﬁangfnmagigg is 4, V, RZ, or any of these followed bty cozplement-
ation. od set of ;'uur black snd white geometric flgures,
sonsidered . as subsets of the square, is one with the follewling
propertisss (1) If one of the figures has a regularity, the other
thres have the sams repularity; (2) If s regulsr transformation
interchanges two figures, it interchanges the other two alsog
{1)Any 2x2 normal matrix of elements from the set 1s regular.

Ey an gorbit in a latt%g; of squares we mean & set gf four 1xl
subsquares carried into one another by H, v, and R<; by an orbif
in @& t we mean 8 2x2 submatrix, 1ts a-n{:riea those 1n an

ar [ s matrix lattlce.

17. PROELEM: Show that the definitlon of a good set above i= redundan®
alpnce it i3 equivalent to the following: a wpood set® of four
distinet figures i1s one which always ylalds a regular result when
the figures are used in a 2x2 matrix with four distinet entries.

18, THEOREM: Every good set, when substituted for the elements of a
four-slement matrix (foursguars) F of even order (Le®ay SMX2M )y
always ylelds a ragular ﬂ{uu if (if and only if) P is normal.
FROCP: Suppose P is normal. Then Hy V, and A2 induce permutatlons
of the elements of Fj furthermore, .t.i“ two elaments are transposed
b{ such a permatation, sc are the ather two. These properties of F,
along with properties (1) and (2) of an arbltrary good set, ensurs
that each orbit of the new matrix shares the regularity of 1ts
center guarenteed by property {1). Hence the new meirix is regular.
Wow suppose P 1s & foursquare and nod normal. We will firat show
that it must be strueturally a;rm.mutr&c ({,8.y 1ts set of block maps
must be invariant) under H, ¥, and R i 1t 15 to enjoy the prop—
arty described in the theorsm for good sats. What happens if
we replace itz elemants with trlangles? Buppose it lacks struct-
ural symmetry under H or V -- S8Y, without loss of generality, H,
since triangles remain triangles under a 90 degres rntatw.

Then 1t mast also lsck symmetry under V or RZ, since E=VA<. If 1t
lacks RZ symmetry, the only possible regularity 1s under V; then
use one ¢f peirs Aor B below as the middle two entries in some N
to preclude regulsrity. I1f it lacks ¥V symmetry, then use one of the
‘ ‘ ‘ ' pairs C or D in opposite corners of the
5 ; matrix to preclude regularity. ( Palr D and
A ] thelr images under V constitute the good
{’L{ {.;: 4 set of vhat we will call arrows.)
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We now will assume that P 1s =tpructurally symmetriec under H, Y,
and B2, although not normsl, and alsc assume that P always ylelds
regular Tipures under substituticr of teiangles, This will enable
us to eliminate from consideration sll but elght sorts of matrices,
gach of whish will not work when s*rows are used, How, since P 1s
not normal, under cilther H or ¥ -- say H -- 50me @ap mist be -
asymmetric. This implies that !, actlng @5 & ?&rmutaticn or. P's
elements, is of the form (ab)(c,(d) == say, taking the elements to
be 0,1,2,3, that H= (@1)(2){3)= (C1). (If H were, say, (O1)(23),
then it would interchange the sets 50,21 4 41,34 and alsoc the sets
12,3%,31,2% , so all three block maps would be symsetric under Hy
since if two are the third must be also, and clearly £ is nelther
& J=cycle nor B 4=gycle nor the Lientity permitotion,. ) Low surpose,
or the one hand, thst there exists some trisngle metrix lorced
from P with 8 V regularity. Then ¥ 1s either (01}(23) or {02)(13)}
or {(03)(12). (For a trisngle matrix, there is no regularity under
¥V if any element is taken to 1tself by V acting as a pergutation.)
Following Hy, V Euat give elther (GLJ(01)(23)= (23) for R= or give
a #=cycle for RS, which is impossible. Henee H=(01), V=(01)(23),
snd R€= (23). As 2 and 3 are invarisnt under H, there can be no
regularity of & triangle matrix under H. And the following order-
ing of glamanta produces a fipure with regularity under neither
¥ ner Re:
Suppose, on the other hand, that no triangle
‘ ‘ r L . matrix formed from P has & V regularity. Then
& 1 L E ¥ cannot be of the form {ab){cd so must be
the identity I or of the form {1E}.

If V=1, then BE2= (0l), so let 0 be the triargle with 50 degree
angle 8t lower left an& 1l bea the triangle with 90 degrees angle at
lower right to get a figure with no regularities. If V is of the
form {‘3 y then V= (01) or (23), =ince any other choice for V¥
ngkes Re= HV a 3-cycle, which is impossible. If V=(23) then
R ={DIJ{E§]. so agein let O and 1 be triangles with 90 degree

angles as Escrihed-tu get a figure with no regulsrities. I V is
(01) then Re= I, and P must be structurally congruent to one of
the following I{[ht matrices:

L+ 1 o e 0101 a2zl 0221

2332 23132 30131 3103

' 3312 23132 3103 g 01 a

1100 1010 12240 2 2

2012 2012 2012 2012

93131 3013 3103 1330

i g g L] 1103 301 % Q3 a 1

2 2 2102 210 21 2

An irregular arrow matrix may be formed from each of the eight,
zinc- sach has one orbit entirely of 3j's and one with O's on
he main dlagonsl and 1's on the secondary; these orbits can be

This completea the
and { proof of the theoresm.
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DEF] n Wa nesd some paman to describe the sort of matrices

lq.cgnafll-urégpg‘m the proof of the last theorem, at the and. We will
eall foursquares structurally congruent to any of thess elght
matrice ni gng“gﬁa;;;. In general, we will call matrices for
which Rg [ 5 each slement bto 1tuu;1‘.‘ rotal, and non-normal rotal
matrices gkew. There are 12 skew fouragquares, modulo structural
congruence, It is conveniant to have nomes for some other §orts
of foursquares: The ¢ fouraquores are thoss structurally
congrusnt to any of the Iollowing, obtained by subjecting the table
of the cyelle group of order four to row=column permitations:

6123 0123 01231 0123 0123 0123 0123
12323 14:1%%13“:2 1230 2301 2031 231
23861 2310 2621 30lz2 12340 136062 3201
3612 3201 3210 2301 3012 3210 1032 .

The a foursquares are those (previously given) simllarly
abtniﬁgﬁ from the quadratic group (i.e,, the four group).

20.PACT: Every Lxi Latin sgquare is oyclic or quadratic. (To snow this,
it is sufficient to conslder only the squares with first row and
eolumn in standard order.)

21.W0TE: Cyclic and quadratie fouraquares are closaely related in
structure, The sketch for a painting in illustration 2 shows this
by converting them to triangle matrices in every posaible way
modulo matrix rotations. The larger matrices are quadratlc, the
smaller eyclic, The right half of the sketch is obtained by Tlip=
ping the left half about its right odge, then rotating each
triangle through a 90-degree turn to obtain the dua of the
flipped matrices. Two of the matrlces are s Lle#., con-
g:uent to their dusls; it happens thst these are e only selfl=

al normal triangle foursquares, so dualizing makes the listing

of such matrices a good deal essler. Fote that in duallzing,
ares of symmetiry become axes of complementarity. and vice-versa.

The diagrams at right show the reglons into which

structurally congruent matrlces fall, for a given

half (left or right) of the aketch.

22.THEDREM: A triangle matrix is plaid if and only if O
its diagonal boundary lines between black and white,

r;gnrdud a3 elemants of a matrix with twoe sorts
of entries, form a plald matrix, and its horizontal e
and vertical boundary lines between black and gquadratic

white (its cufs) are those of a plaid map.
PROCF: Suppose the matrix is plaid. Cne sort of

disgonal belongs to elements O and 2 at left, the

“ ‘ r L other to 1 and 3. 8Since the 0=2
y i 2 3 man 1s plaid, the condition on
el diagonals is satiafied, A wert-
cal ¢ut can appear only betweer O and 1 or between

2 8nd 3. Thus the vertical cuts ares the complemant,

in the set of possibla lires of the
vertical lines
of the O-1 map, hence are thala of & plald mapy sim=

ilarly for horizental cuts. If the boundary-

cundit:;:: n:;a:-tiarsad. then thu-unn. 1::: ﬂ%n:ﬁlﬂ' oFeale
8 the §=2 map 15 plaid, and that the wertical

{horizontal) lines of the O-1 (0-3) map are thase of a plaid map,

Hence, since sach map is the sy
peae, sinte e m of the other two, all thres
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23.HCTEr  The theorem sbove provides an easy way of listing all
nm pl_li.! triangle oatrices: “out™ yith p‘ufﬂ m&ps the diapgonal-
1ine figures obtained by "coloring® pleid maps with diagonal lines,
than deleiing the maps. For sxample;

The 12 dlsgonal-line fipures used in cutting dlamonds are:

KSR &

G REXAN N

*ote that ome occssionally obtains a nen=foursquare by cutting
one of these fipures with a plaid mep; such non-foursquares, and
i those obtained by cutting the figure at left, have

7/ regularity propertier like those of foursquaras.

#"  There are, module rigid motions and complementatlon
143 plaid diamonds,snd 29 plaid triangle matrices that
//" are not fﬂlﬂ"sﬂ“lf!’-

2%, THEOREM: A Znxn (4x%) triangle matrix is normal (plaid) if and
only if each orbit (quadrant) has the same set of block maps and
the same nonempty set of regularities.
FROOF: If a 2nx2n matrix is normal, then {b{athn proof of 18 )
esch orbit has the same nonempty set of regularities; if two of
the orbits differ in structurs, thers must be an anga of sle=
ments under H or V of the sort impossible in a normal matrix.
t'ow mssume that the orbits satisfy the given conditions. If the
square is not normal, then either its set of bloek maps changes
under H or V, or it does not and H or V induces a permutation of
elements of the form (ab)(e)(d). In the former case, we have a

situation like that shown at left, which is ruled

out by a consideration of all combinatiocns of tri-
angles that mAy ocour in such a situation, since
each combination wviclates the condlilon on regu-
larities of orblts.

2

e

E O

:
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In the latter case, suppose V, say, induces, say, (ab){c)(d).

ab ab abd The orbits in which a and b are
cd ba ab look like one of the thres at In;:ttc%:daiggteniu
it 1= impossiblas for ¢ and 4 to recain un!wituhld,
since the orbits in which they occur muat loak the same way,
The similar result for 4x4 plaid matrices and thelr gquedrants fol-
lows from the fact, easily verified, that a 2x2 triangle matrix
is regular if and only if 1t is pln{d, from the fact that by row=
column permutstions a quadrant can bs made the central orbit of a
new 4x4 matrix whose orbita are the quadrants of the old, and
froe the following theorem.
25.THEOHEM: The set of 4z plald matrices (foursqusres) 1s closed
{closed and transitive) under permutations of rows, columms, and
quadrants.
FROOF: To show closure, it is sufficient to show that Lal plaid
basis matrices remain piaid under such permutations, and this 1s
sasily done. To show transitivity fer foursquaras, one may use
brute force to find, modulo permutations of elements, the (&) sub-
gets trapsitive under row-golumn persutations and te show that a
member of each 1s taken by row-column-gquadrant persutations to
the matrix at laft, for which gquadrant permutations

aabb {nduce all possible pesrmutations of elements,
aabb og PROBLEM: Show that the set of block meps of a four-
cecdd square remains invariant under row or colusn permu-
cedd tations of the four-group type (i.s., I, (12)J(34),

{13)(2%), (14)(23)) if and only if the metrix is plald.
27, PROBLEM; Show that s normal foursquare remains normal under all
permutations of rows and columns enly if it is pleid.

28, HISCELLAKECUS FROBLEMS:
(1) The four group is the only one that occurs as & normal sub-

group of an alternating group. List other unigque properties of
the four Eroup.

{2) Prove, or disprove, modify, and prove the modificatlon:

If one block matrix of a dismond is obtalned from & normal block
matrix by row-column-quadrant persutations, and another is plaid,
then (a)-each gquadrant is normel or each 1s non-normal; (b)-some
regular transformation T combined with 8 row=column persutatlon F,
sach scting on quadrants rather than cn the whole metrix, converts
ans of eaeh of two pairs of quadrants toc the other of the palr.

What of such diamonds are transitive under row-colusn-guad-
L aete 5 what dlamonds have properties & and b?

ant nermutations? Generally,
EEJ Which-1if sny- of the results we have considered have analogues

for Bx® matricesy Do any of the groups of order B have properties
in some way analogous to those of the four group?

(&) Which-1f any- of our results for even-order msirices have
analogues for odd-order mstrices?

(5) What - 4f any- ore the interesting algebraic properties of the
various classes, other than normal, of matrices that we have men-
tiored: cyclié, rotal, skew, pl, and those in problem 2 above?

(6) Prove or supply a counterexample:; If Bi{N) is the Q-1 block
matrix of N, then for normal foursquares F, Q we have PQ =

1281 (P)B,(Q) + 225, (P)B,(Q) + 32B3(P)B,(Q), considering F,Q in My (F).
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29.K0TE: In analyzing the structure of a b
matrix, the tesseract (i.e., hypercubs)} T
at right below is sometimes useful. Note
that T 1s the dlagram showing partial or-
derinig, by inclusion, of the subasts of &
four-element set. If the matrix O at the
right 1z considered as drawn on 8 TOFus,
then entriea of § are adjacent if and only
if the corresponding vertices of T are.
Tha antries in & row, eclumn, or 2x2 sub-
matrix of § correspond to the vertlces in
a parallelogra=z in the drawing of T.

E-1) i

T " ol
e o

1o [I-3

=T <:\\ ¥l

i3] / al

(1] Ll

[

o 1% el

s an

- &

Symmetric

Varsion of T
Referancey = i
F. E. ’

p e

9o

-0
___l——q—l:h
og|lo=ja-"00

o-l6—=|0a|sn)l

o olg=|0 -
a -|b=|0 00D
R — -

- O == ==

T

Opposlte
sub-cubas of T
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30. FOTE: Listed below are ths warlious ways in which rigid motionas
of the squars induce permutatlions of entries, for the sorts of

foursquares we have mentioned.

By R we mean & 50=degress countar-

elockwise rotation; by D, a flip about the prineipal disgonal; by
D', = £lip about the secondary diagonal.

o

norna

:
:
7

el e e e B
bg;I "
22

—
o 0O
==
Nt " Bt

Pl

bl e

1
8
9
1C
11
skew, non-pl:
12

1

-

v

1

(ab){ecd)
(ab){ed)
(ab)(ed)

1
{ad}{be)
(ad)(bc)

(ab)
{ab)
(ab)
{ab)

eyelic, non-norsel:

15 (ab)
16 (ab)
17 =

{ab){cd)

1
(ab){ed)
({ab){cd)
(ab){ed)
éah}écd}
ac)(bd
(ac)(bd)

{ab)
(ab)
(ab)
(ab)

PTe—

(ab)
{ab)(ed)
{ab)

(achd)

1
{ab){ed)
(ab)

(ab)(ed)
(ab)

gl
{ab)
(ab)(ed)
(ab)

(adbe)

I
{abl{ed)
(ab)

[——

(ab){ed)
(ab)

1]

{ab)
1
{ed)

tea)

(ab)
{ed)

DI
{ab)
I
{ed)

(ab)

(ab)
{ed)
I

{ab)

If we use the Polya-Burnside theorem to snumerate the gecometric
matrices thet can be formed from two foursquares that fall into

the sames cne of the 17 categories sbove, the result for each
foursquare will be the same.
formed from one foursqusare will resemble

Furt hdl‘m!‘l;

the peomatric matrieces
hose formed from the

othar, 85 far as symmetry and self=complementarity are concerned.

For reference, here 1s the group of symmetrles of the sguare:

1 R? H R R D D
1 I RE ¥ H R Rl D D
2 | 8° B v "l R D' D
v v I R b o» R F1
it v R I m p 8l R
R R gl D R I vV
&4l =l B D » 1 R ¥
D o pr w1l R m y I R
ot | o+ o & Rl v o R® 1

11
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ADDERTH
Gensralized Matrix Hultiplication

In computing the producst MN of two 4x4 matrices, we may take the
orthogonsl foursquares in fig. A below ax a gulde, To compute

gn entry of the product, we look at the entry in the sams posltlon
in Ay; suppose it is n. There are four n's in Ay; we take the
entrias in M that are in the same positions as t&. n's in Ay as
the entries of & 1x&% vector, using the order of the sntries in the
corresponding positions in lg as & gulde for the order in which we
take the entries from M in forming the vector. We then form
another wector, from antries in N, now using A; as & gulde to
position and A7 as 8 guide to order. PMinally, we take the inner
product of the two vectors as cur entry of MN. )

In general, we can use any two orthogonal foursquares to define s
miltiplication, by using the above procedurs -- for instance, we
can usa those in figs. B or C below. (Ses examples below.)}

Fig. & Plg. B Fig. C
1111 123k 1122 1331 123 123k
2222 12%4 1122 w224 uﬁa kgzl
Ea&elzgak 33k 2ok aulzz b 3

123k 334 1331 321 3L12

Ay Ag By BE 51 Ca

Examples: (Entries in matrices are from F.)

o123\ [f1230Y g e Wy 5
Using 1032 raolil—- 1111
PMg. B: 2301, @, 3102 333 3
3210/ w321/ 1111
0la3 12%13*- fp123
Using 1032)g (20 3] - (1033
Mg.C: '2301/¥:13102 — '2301
3210 0321 3210
JoERay JrEses f2103
Using foo11} 2013,_.(21:-;
Pig. C: 12233,&:l31n2j— 301
2233/ 0321 g1z

Problems What sorts of orthogonal pairs of foursquares, besides
those in fig. A above, vield multiplications under which the set
of normal (or of plaid) members of M,(F) 1s closed? L
Problem: Wwhen is this sort of generalized multiplication associatl




