Cartcthe n-Category Cafe

«Partition Function as Cardinality \mid Main

October 25, 2022

Booleans, Natural Numbers, Young Diagrams, Schur Functors Posted by John Beez
Theres'san adjunction between commutative monoids and pointed sets, which gives a
comonad
Then:
Take the booleans, apply the comonad and get the natural numbers
Take the natural numbers, apply the comonad and get Young diagrams
Take the Young diagrams, apply the comonad and get Schur functors.
Let me explain how hhis works

There's an a ajiunction between commutive monoids and pointed sest. Any commutative Nathtur
monoid $(M,+, 0)$ has an underlying pointed set $(M, 0)$) so we geta functor
$\quad U:$ CommMon \rightarrow Set.
Is. And his has a left ad

$$
F: \text { Set, } \rightarrow \text { CommMon }
$$

This sends any pointed set $\left(S,{ }^{*}\right)$ to the free commutative monoid on S modulo the congruence
relation that forces * to be the identity. And that's naturally isomorphic to the free commutative monoid on the set $S-\left\{{ }^{*}\right\}$.
So, we get a comonad
FU: CommMon \rightarrow CommMon
What happens if we start with our favorite 2 -element commutative monoid, and repeatedly apply this comonad?
My favorite 2-element commutative monoid - they're all isomorphic - is the booleans $B=\{0,1\}$ made into a commutative monoid using 'or'. Its identity element is 0 .
If we take (B, or, 0) and apply the functor

$$
U: \text { CommMon } \rightarrow \text { Set. }
$$

we get the 2 -element pointed set $(B, 0)$. When we apply the functor

$$
F: \text { Set. } \rightarrow \text { CommMon }
$$

to this 2 -element pointed set we get \mathbb{N}, made into a commutative monoid using addition. The reason is that N is also the free commutative monoid on the 1 -element set $B-\{0\}$.
If we apply the functor U to $(\mathbb{N},+, 0)$ we get the pointed set $(\mathbb{N}, 0)$. When we apply the functor F to the pointed set $(\mathbb{N}, 0)$ we geta commutative monoid that's also the free commutative monoid on the set pointed set $(\mathbb{N}, 0$, we get a commutative monoid thats also the free commutative monoid on the set
$\mathbb{N}-\{0\}=\{1,2,3, \ldots\}$. This is usually called the set of Young diagrams, since a typical element looks
$\stackrel{N}{\text { Nike }}$ lion
so it can be drawn like this:

(I'm counting the number of boxes in columns. We can also use the other convention, where we count the number of boxes in rows. That's actually more common.)

Note that there is an 'empty Young diagram' with no boxes at all, and that's the identity element of the free commutative monoid on $\{,, 2,3, \ldots\}$. But there aren' Young diagrams with a whole bun box columns, which is why
commutative monoid on N .

Let $(Y,+, 0)$ be the commutative monoid of Young diagrams, where 0 is the empty Young diagram
the one with no boxes at all. Applying U to this we get the pointed set of Young diagrams, $(Y, 0)$.
Applying F to that we get a commutative monoid $F(Y, 0)$ that's also the free commutative monoid on
the set of nonemptyYoung diagrams. the set of nonempty Young diagrams.

And this commutative monoid $F(Y, 0)$ is important in representation theory! The category Schur of
Schur functors has Young diagrams as its simple objects Rut general Schur functors has Young diagrams as its simple objects. But a general object is a finite direct sum of
simple objects. So, the set of isomorphism clases of schur functors is nturaly s ismorphic to $F(Y$ o simple objects. So, the set of isomorphism classes of Schur functors is naturally isomorphic to $F(Y, 0)$. monoid structure. So here is the slogan:

Take the booleans, apply the comonad $F U$ and get the commutative monoid of natural numbers.
Take the natural numbers, apply the comonad $F U$ and get the commutative monoid of Young diagrams. Take the Young diagrams, apply the comonad $F U$ and get the commutative monoid of isomorphism classes of Schur functors.
Of course I want to do it again, but I'm not sure where the resulting structure shows up in math. Maybe some sort of categorified representation theory?
Posted at October 25, 2022 3:07 PM UTC
TrackBack URL for this Entry: https://golem.ph.utexas.edu/cgi-bin/MT-3.0/dxy-tb.fcgi/3425
Some Related Entries

4 Comments \& 0 Trackbacks

Theo
My favorite 2 -lement commutative monoid - they're all isomorphic

Isn't $\mathbb{Z} / 2 \mathbb{Z}$ a commutative monoid
Posted by: Theo Johnson-Freyd on October 25, 2022 4:43 PM | Permalink | Reply to th
Re: Theo
(For some reason, my computer autofiled the subject with my name. I don't know why.) \$y.
Posted by: Theo Johnson-Freyd on October 25, 2022 4:44 PM I Permalink | Reply to this
okay, half of them are isomorphic
I hould $\mathrm{ry} \mathbb{Z} / 2$ and see what that gives.
The problem with subject headers is something we don't really know how to fix, sorry. Look at the ine "Subject" as you're composing your comment, and make sure it says something acceptable Yo line "Subject as you re composing your comment, and make sure it says something acceptable
can change it at that time; later the only solution is for a moderator to delete your comment.
Posted by: John Baez on october 25, 2022 5:34 PM | Permalink | Reply to this
$\mathbb{Z} / 2$ gives the same thing.
Posted by: John Baez on october 25, 2022 5:38 PM | Permalink | Reply to this
Post a New Comment
ccess Keys: $[0=A$ Accessibility Statement 1$]=$ Main Page 2$]=$ Skip to Content 3$]=$ List of Posts $4 \mid=$ Search

