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NOTE II

ON THE HEXAGRAMMUM MYSTICUM OF PASCAL

If we have in a plane two triads of points, C/, F, W and U\ V\ W\
which are in perspective, the joins UU\ VV, WW meeting in a
point, and the intersections of the pairs of lines, VW and V'W,
WU and W'U\ UV and U'V being in line, then the remaining
intersections of the lines VW, WU, UV with the lines V'W\ W'U\
U'V are six points which lie on a conic, as we know from what we
have in the text called the converse of Pascal's theorem ; and, if we
take these six points in any order, the triad formed by one set of

alternate joins of these six points is in perspective with the triad

formed by the other set of alternate joins, as we know from Pascal's

theorem. The axes of perspective of these various pairs of triads

are called Pascal lines ; they are sixty in number. They cointersect

in sets of three (or of four) in various ways, and these points of

intersection lie in sets upon lines, as has gradually appeared from
the work of many mathematicians, Steiner, Kirkman, Cavley,

Salmon, Veronese, Cremona, and others. The proof of the properties

in the plane, though interesting, is intricate. It depends upon
successive applications of Desargues' theorem, which we have learnt

to regard as deduced from Propositions of Incidence in three di-

mensions ; and it is the fact that all the results which have elicited

attention are such as may be obtained by projection from a figure

existing in such a space ; this manner of proof is much simpler

than the proof in the plane. Applied by Cayley in a particular way
{Coll. Papers, vi, pp. 129-134 (1868)), it was applied by Cremona
to a figure more general than Pascal's {Memorie d. r. Ace. d. Lincei, i,

1877, pp. 854-874). Three distinct points of Cremona's treatment

of the figure in three dimensions are, (a) That it depends upon a

configuration of fifteen lines lying in threes in fifteen planes, of

"which three pass through each line, (b) That this configuration is

deducible from a figure of six planes, forming, in Cremona's phrase,

the nocciolo of the whole, (c) That when the equations of these

planes are introduced, only one of the identical relations connecting

these comes into consideration. It follows from the last that we
may regard the six loci as being in a space of four dimensions.

This procedui-e, which Richmond has used, leads to a very simple

treatment of the whole matter, which is the more interesting because

the figure in four dimensions is one which, as we shall see in a
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220 Note II

subsequent volume, is of fundamental importance. Cremona''s figure

of fifteen lines lying by threes in fifteen planes is an example of the

(3, 3) correspondence which it is possible to set up (in various ways)

between any two sets of fifteen things ; this had been considered by
Sylvester, in connexion with the problem of naming a function of

six letters capable only of six values under permutation of the letters

(Sylvester, Coll. Papers, i, p. 92 (1844) ; ii, p. 265 (1861)); it is per-

tinent and instructive for the problem in hand to consider this.

In the following note we have (1) dealt with this problem of arrange-

ments, (2) shewn how this can be represented by figures in four,

three and two dimensions, (3) pointed out the properties of the

figures which lead to the classical properties of the Pascal figure,

(4) explained the exact figure, relating to a cubic surface with a
node, by which Cremona was led to the generalisation, (5) given

some examples of the proof in the plane of the properties of Pascal's

figure, and of the configurations arising from some selected portions

of the figure in three dimensions, and (6) made reference to the more
important original authorities. The reader may prefer to read (4)

before the other sections.

(1) Consider six elements, which we denote, at present, by 1, 2,

3, 4, 5, 6. These can be arranged in three pairs, for example 12,

34, 5Q, wherein, in each pair, the order of the elements is indifferent,

and the order of the pairs, in each such set of three pairs, is also

indifferent. Such a set of three pairs, involving all the elements, is

what was called by Sylvester a syntheme, each of the pairs being

what he called a duad. The total number of possible duads is

fifteen ; this is also the total number of possible synthemes. It is

possible to choose a set of five synthemes which contain, in their

aggregate, all the fifteen duads. Such a set of synthemes is called

a system. The total number of possible systems is six ; if these be

all taken, each containing five synthemes, every syntheme will occur

twice, in different systems ; as has been said, each duad occurs once

in each system. Such an arrangement was given by Sylvester (see

below). If we assign names to the systems, say P, Q, R, P\ Q', R',

each syntheme, as occurring in two systems, will correspond to two
of these six letters. Thus every one of the fifteen pairs which can

be formed by two of these six letters, say, a letter-duad, will cor-

respond to three number-duads, chosen from the possible fifteen

duads of numbers, forming a syntheme. The converse is also true

;

any duad of the numbers being taken, the remaining four numbers
can be taken in pairs in three ways ; thus any duad occurs in three

synthemes, and each of these synthemes enters in two of the systems.

The duad thus corresponds to three pairs of systems ; or any one
of the fifteen number-duads corresponds to three letter-duads, chosen

from the. possible duads of P,Q,K,P\Q',K'. Therefore, as any
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fifteen things can be identified by naming them after the pairs

which can be formed from six arbitrary symbols, we can have a

(3, 3) correspondence between any two sets of fifteen things. As
has been said, the importance of this for the present purpose was
emphasized by Cremona {loc. cit. pp. 854, 866, 870). A further

remark which is of use is that two synthemes which have no duad
in common occur together ifi only one system, since two systems

have only one syntheme in common. Two such synthemes thus serve

to identify a system. [Add.]

Of the various possible ways of assigning the names P, Q, ..., R'

to the systems, one example is given in the following scheme, which
can be read either in rows or columns.
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Perhaps the easiest way to describe these notations is by the

diagram given below in (2), p. 225, or, in another form, in the

Frontispiece of the volume.

Now let us consider four of the six systems, considered as two
pairs, say, for definiteness Q, B! and Q', R. The synthemes common
to the two pairs, that is the syntheme common to Q and i2', and
the syntheme common to Q' and jB, will necessarily have a duad in

common. Further this aggregate of two letter-duads, Q, B! and
Q', 2?, may be identified by the common number-duad of the two
synthemes, taken with one duad from the first syntheme, and one
duad from the second syntheme, so chosen as to have one of its

numbers the same as one of the numbers of its companion duad
from the first syntheme. In the particular case chosen, Q and jB'

have common the syntheme 13 . 24 . 56, while Q' and 22 have
common the syntheme 13 . 25 . 46. These synthemes have the duad
13 common; we say that the combination Qtt . Q'i? may be identified

by the symbol 13 . 24 . 25, or by 13 . 42 . 46, or by 13 . 56 . 52, or

by 13 . 65 . 64. All this is quite easy to see. For first, two synthemes,

that have two duads identical, are themselves identical; and second,

two synthemes that have no duad in common both occur in the

same system, and nowhere else, as we have remarked. The two syn-

themes chosen, the former common to one pair of systems, the latter

common to another pair, must therefore have a duad common. Using
a, /3, 7, a', y8', 7 to denote the numbers 1,2, ...,6, in some order, let

these synthemes be /SV . a/3 . 7a' and /3'7' . ay . /Sa'. From these we can

form the symbol /S'7' . a^S . 07 (as well as three others). Conversely,

if this be given, the formation of the two synthemes having /S'7' in

common and containing, respectively, also a/3 and 07, is without

ambiguity ; so that the symbol identifies the two pairs of systems

from which it was formed. Such a symbol, or any one of the other

three symbols which identify the same pair of systems, we speak of

as defining a T-element. The total number of T-elements is thus

1.15.4.3, or forty-five. Now take the six systems in any particular

order, say, P^RP QR\ where it is to be understood that this is

considered equivalent with its reverse order, R QP KQ'P, and may
be named beginning with any one of its letters, as for instance by
RP'QR'PQ'; thus the total number of orders is (6!)/2 . 6, or sixty.

Then take, with each pair of letters in this order, that pair which

is not contiguous with it on either side; thus, with QR' take Q'R^

with RP' take R'P, and with P'Q take PQ'. For each of these three

sets of two pairs, form the corresponding T-clement. It will be found

that these can be represented by symbols of the respective forms
/Q'7' . ccl3 . ay, y'a . a/3 . 07, a'/8' . a/3 . a7. For instance, with the order

PQ'RPQR, the two pairs QR\ QR give a symbol 13 . 64 . 65, the

two pairs RP\ RP give a symbol 23 . 64 . 65, and the two pairs

I
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PQ', P'Q give a symbol 12 . 64< . 65. And these three symbols have
in common the duads 64 . 65, which have the number 6 in common.
Conversely consider the aggregate of two duads a/S . ay, having the
number a in conunon; we shew that this leads to a particular order
of the symbols jP, Q, ...,R'. This aggregate belongs to only three

symbolsofT-elements,namelyyS'7'.a^.o!7, 7'a'.0/9.a7anda'/3'.a/9.a7.

Of these the first arises by combining the two synthemes /S'7'.ay3.7a',

^'y' . ay . ^cc, and there is no ambiguity as to these ; for the moment
let these synthemes be denoted, respectively, by p and p'. The
symbol 7'a' . a/3. a7similarly arisesfrom thetwo synthemes 7'a'. a/S. 7/3',

7'a' . a7 .
/S/3', which we denote, respectively, by q and 5''. Lastly,

the symbol a'/S' .aj3 .ay arises from the two synthemes a'^' . a/3 .77',

ci'/S' . 07 . ^y, which we denote, respectively, by r and t'. We have,

however, remarked that two synthemes, which have no duad in

common, determine a particular system. Thus the synthemes q and r',

namely y'a' . a^ . y^' and a'/3' . a7 . ^y', determine one of the systems

P, Q, ...,R'; this system we may, for a moment, denote by (^r').

It is easy to see that the whole of the six systems are thus determined
by such pairs of the six synthemes, which we may arrange in the

order pq' . q'r . rp' . p'q . q?-' . r'p, there being no other pairs of these

synthemes which have no duad in common. So arranged, every

consecutive pair of these systems determines, with the pair which is

not contiguous with it on either side, a T-element. For instance,

if we take the systems jyq',q'r, p'q, qr', the first pair have common
the syntheme q' or 7'a' . a7 . /3/3', the second pair have common the

syntheme q or y'a . a/3 , 7^3', and these together determine the

T-element represented by 7'a' . a^ . ay.

We see then that the operation which we carry out when, in

Pascal's figure, we form the Pascal line for six points P,Q,...,R'oi
a conic, taken in a particular order, can be carried out exactly with
the symbols, the systems of synthemes taking the places of the

points of the conic. The join of any two of the six Pascal points is

replaced by one of the fifteen number-synthemes ; the intersection

of two of these joins is replaced by a T-element, represented by
such a symbol as ^'y' .a^.ay; and the Pascal line containing three

of these intersections is replaced by a symbol, such as a/3 . ay, con-

sisting of two duads having a number (o) in common. We have
seen that any such symbol leads back to a particular order of the

six letters P, Q, ..,,R'. It is in accordance with this, that the number
of possible symbols a/3 . 07 is 6 . 10 or sixty. It is at once seen in the

Pascal figure that through the intersection of two opposite sides of

the hexagon there pass four Pascal lines, the two pairs QR', Q'R,
for example, being non-contiguous in each of the four hexagons
PQ'RP'QR', PQ'RP'R'Q, PRQ'P'QR', PRQPR'Q ; this corresponds

to the fact remarked that the T-element ^'y . a/8 . a7 is capable also
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of the representations ^'<^'
. 7a' . a7, ^'y . a/3 . ySa', ^'y . a'7 . a^.

The total intersections of the fifteen sides in the Pascal hexagon, in

number ^ 15 . l-i or 105, consist in fact of ten intersections at each

of the six vertices P,Q, ...,B', together with an intersection at each

of forty-five T-points.

(2) We now consider a geometrical interpretation of the relations

we have described. Fii'st, in four dimensions, we can set up a figure

of fifteen points lying in threes on fifteen lines, of which three pass

through each of the points, beginning in various ways. If we
take six general points, say F, G, H, R, S, T, of which the symbols

will be subject to one relation, which we write in the form

F + G + H + R + S-\-T = Q^ there will be fifteen points of symbols

each the sum of two of F,G, ..., T, and, for instance, the points

F + G, H + R, S + T will be in line ; of such lines there will be

fifteen. Three of these will pass through each point; for instance,the

lines {F+G,H+R,S+T),{F + G,H+S,R+T),{F+G,H+ T,R+S)
pass through the point F + G. Denoting the six points F, G^...,T

by 1, 2, ..., 6, each duad, such as 12, may be supposed to re-

present one of these points, and each syntheme, such as 12 . S-i . o6y

to represent one of these lines. Or, we may take four arbitrary lines

of general position, say, a, b,c,d; every three of these will have, in

four dimensions, a single transversal ; let the transversal of a, b, c

be denoted by d', that of 6, c, d by a, and so on, the four transversals

being a', b\ c', d'. It is then easy to shew that the line, say n, joining

the points (a, 6'), {a, b) intersects the line, say r, joining the points

(c, £?'), (c', d) ; so, the line joining the points (c, a'), (c', a), say w,

meets the line joining the points (6, d'\ {b', d), say q ; and likewise

the line joining the points (6, c'), (6', c), say Z, meets the line joining

the points (a, d'), {a, d), say p. And further that these three

points of intersection are in a line, say e. Six fundamental points

F,G,...,T^ from which these statements can be justified, are obtained

by regarding the points {b', c), [c, a), («', b), {b, c'), (r, a), (a, b') as

being, respectively, the points 23, 31, 12, 56, 64, 45. These six points

may in fact be taken arbitrarily to obtain such a figure ; denoting

them, respectively, by AyB,C,A',B',C\ the six consecutive joins

of the hexagon BC'ABCA' are the lines a, b\ c, a, b,c' ; the lines

d, d' are then, respectively, the common transversals of a', 6', c', and

of a, 6, c, and the figure can be completed. The fundamental points

are then F = h{^ + C -A), R^^,{B' + C - A'\ etc. The various

relations and notations are represented by the diagram annexed

;

the fundamental importance of the figure justifies this lengthy

description. We shall for clearness denote this figure by 11. It

depends on twenty-four constants. We do not now consider the

dually corresponding figure in four dimensions. We consider how-

ever the figure obtained by projecting the figure H into space of
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\

three dimensions, which we denote by S. It can be constructed, as

in the diagram annexed, or as in the diagram given in the Frontis-

piece, by taking four points which he in a plane, those denoted by

23, 35, 56, 62 ; then drawing, through 23, the two arbitrary hues

b' and c, and, through 56, the two arbitrary hues b and c' ; then,

from 35, drawing the hue d to meet b' and c', and the hue a' to meet

b and f, and also, from 62, drawing the line d' to meet b and c, and
the line a to meet b' and c'. The remaining incidences of the figure

then follow necessarily', as the reader may easily see. This figure

depends on nineteen constants ; so that there are x ^ possible figures

when the six fundamental points, from which it can be constructed,

are given. The figure in three dimensions which is the dually

corresponding to S will be denoted by S ; it is the figure mainly

considered bv Cremona (loc. cit.), containing fifteen lines lying in

threes in fifteen planes, of which three pass through each line,

Finallv we consider the figure obtained by projecting the figure S'

on to a plane, which we denote by tn- ; it is in this figure, ot, that

the various incidences which arise from Pascal's hexagram are found,

and for a figure more general than Pascal's. This plane figure con-

sists of two quadrilaterals, say ABCD, A'BC'D', the intersections

of corresponding sides being X of AB and A'B', Y of BC and B'C\

Z of CD and CD' and U of DA and DA', which are such that the

points of intersection, of XZ and YU, P of AC and A'C and

* A proof of this is given, Proc. Roy. Soc. lxxsiv, 1911, p. 599.

B. G. II. 15
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Q of BD' and B'D, are in line. This figure depends on fifteen con-

stants; so that there are x^ possible figures when the six fundamental

points, from which it can be constructed, are given.

The correspondence between the figures and the Pascal configura-

tion can now be described precisely, as in the preceding section. If

we take a particular order of the systems, say PQRP'QR', and
consider either the figure D, or the figure S, it is clear that the

lines QR, QR\ or m and c', are those which join the points 64, 65

to the point 13, the lines RP', RP, or I and c, are those which join

the points 65y 64 to the point 23, and the lines P'Q, PQ', or

a and b, are those which join the points 64, 65 to the point 12.

Thus we have three T-planes passing through the line 64 . 65. In

the figure *S", dually corresponding to S, we have correspondingly

three T-points lying on a line. Projection of iS" into the figure ar

gives then three T-points lying on a line, as in the Pascal configura-

tion. More particularly, each of the systems P, Q\ ... consists of

five lines, both in the figure S and the figure S' ; the systems Q, R'

have a definite line in common, as also have the systems Q\ R. In

order to project *S" into ct, we must take a definite centre of projec-

tion, say ; from this, a transversal can be drawn to these two

lines QR' and QR ; it is the intersection of this with the plane of nr

which gives the T-point. The consecutive lines obtained bv the

projections of the lines PQ', QR, RP',P'Q, QR\ RP on to the plane

of «r, similarly give six lines forming a hexagon; the three points of

intersection of the pairs of opposite sides of this lie on a line. The
vertices of the hexagon in the plane of ct therefore lie on a conic.

If we take another order of the systems, for instance, PQ'RP R'Q,

and project from the same point 0, we obtain another hexagon,

whose vertices lie on a conic, with its Pascal line. This hexagon

will not coincide with the former ; in the particular instance, we

shall have, instead of the vertex obtained by the intersection of the

lines which are the projections of RP' and P'Q, the vertex obtained

by the projections of the lines RP' and PR' ; and so on. As we

shew in section (4) below, it is however possible so to specialise the

figure as to obtain always the same conic in the plane or.

(3) Dealing now with the figure O, orS, we have the fifteen points

such as 12, which we may call the Cremona points; we also have

the fifteen lines, each containing three of these points whose symbols

form a syntheme, such as 12 . 34 . 56. Any two of the Cremona
points whose symbols have a number in common may be joined by

a line ; for instance the line joining the points 12 and 13 is such a

line. These lines we call the Pascal lines; their number is sixty.

A plane containing three Cremona points whose duad symbols are

formed with five of the six numbers, as for instance the plane

23 . 64 . 65, is called a T-plane ; it contains four Pascal lines (64 . 65

;
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46.41; 56.51; 14.15), and three such planes pass through
any Pascal line. In all there are forty-Hve such planes. There are
however also sets of four Pascal lines which meet in a point. For
instance the points 64, 61 are those which, in terms of the six

fundamental points F, G, H, R, S, T, have the symbols T + R,T + F.
The line joining these contains the point R — F ; this we denote by
[14]. Evidently there are fifteen such points, which we call Pllicker

points; and, for instance, through the point [14], there pass the
four Pascal lines 21 . 24, 31 .

34,''51
. 54 and 61 . 64. The Pllicker

points lie in threes upon twenty lines; for instance the points

[23], [31], [12], whose symbols are, respectively, G-H, H-F, F-G,
lie upon a line. Such a line is called a ^-line, or a Cayley-Salmon
line. The Pllicker points also lie in sixes upon fifteen planes. For
instance the points [63], [64], [65], [45], [53], [34] lie on a plane.

Such a plane is called an /-plane, or a Salmon plane. The Pascal
lines lie in threes in planes, in two distinct ways. A plane containing
three Cremona points whose duad symbols contain only three of
the numbers, for instance the plane of the points 23, 31, 12,

evidently contains the three Pascal lines 12.13, 23.21, 31.32.
Such a plane is called a G-plane, or a Steiner plane ; the total

number of such planes is twenty. Again a plane containing three

Cremona points whose duad symbols all contain one number in

common, for instance the plane of the points 41, 42, 43, evidently

contains the three Pascal lines 42 . 43, 43 . 41, 41 . 42. Such a plane

is called a iiT-plane, or a Kirkman plane ; the total number of such
planes is sixty. Lastly, it is necessary to refer to fifteen lines, each
joining a Cremona point to the Pllicker point whose symbol is

formed with the same numbers, for instance the line joining

12 to [12]. Such a line is called an i-line, or a Steiner-Pllicker line.

The Pascal lines will also be called A'-lines. There are certain

theorems of incidence among the various elements in addition to

those which have been referred to. For instance, a Pascal line, or

A;-line, lies in one G-plane, and in three iiT-planes ; this fact will be
denoted, in the summary we now give, by writing k...G, SK. Con-
versely a ^-plane contains, not only three A;-lines, as we have seen,

but also one ^-line; this fact w-ill be denoted by writing K...g, 3k.

We may then summarise the definitions, and the incidences referred

to, which will be immediately proved, as follows : [Add.]

60 A:-lines, Pascal lines, 12, 13,

60 ^-planes, Kirkman planes, 14, 15, 16;

20 ^-lines, Cayley-Salmon lines, [12], [13],
20 G-planes, Steiner planes, 56^ 64, 45

;

15 i-lines, Steiner-Pllicker lines, 12, [12],

15 /-planes, Salmon planes, [63], [64], [Go].

15—2
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l\..G,SK; g...G,3K,QI', i..AG,
K. . .g, Sk; G...g, 3A-, 3i

;

/ . . . 4^-.

The proof of these last theorems of incidence is immediate :

(1) The ^--Hne 12, 13 hes in the G-plane 23, 31, 12 ; and in

the ^-planes (12, 13, 14), (12, 13, 15), (12, 13, 16).

(2) The A'-plane 14, 15, 16 contains the^-line ([56], [64],[45]),

and the A-Hnes 15 . 16, 16 . 14, 14. 15.

(3) The g-line [12], [13] Hes in the G-plane (23, 31, 12), it

hes in the A'-planes (41, 42, 43), (51, 52, 53), (61, 62, 63),

and it lies in the /-planes ([12], [13], [14]), ([12], [13], [15]),

([12], [13], [16]).

(4) The G-plane 56, 64, 45 contains the ^-line [56], [64], [45],

the A^-lines 45 . 46, 56 . 54,' 64 . 65, and also the i-lines

(56, [56]), (64, [64]), (45, [45]).

(5) The i-line (12, [12]) Hes in the G-planes (12, 23, 31),

(12, 24, 41), (12, 25, 51), (12, 26, 61).

(6) The /-plane ([63], [64], [65]) contains the ^-lines

([63], [64], [34]), ([64], [65], [45]), {[65], [63], [35]),

([45], [53], [34]).

It is interesting, however, further, to remark, that the relations

expressed bv
* K.. .g, Sk ; G. . .g, 3A-, 3i ; /. . .4^

can be verified by considering only a single threefold space which

forms part of H, there being in H fifteen such spaces ; and the

relations expressed bv

A . . .G, 'Sk ; g. . G, QK, 3/ ; i..AG

can be verified by considering only elements passing through a

single point of 12, there being fifteen ^uch points, which correspond

dually in fl to the threefold spaces just spoken of. For if we consider

the space determined bv four of the six fundamental points, say bv

G, H, S, T, which contains the points 23, 25, 26, '65, 36, 56, [23],

[25], [26], [35], [36], [56], it is at once seen that this contains

four AT-planes, four G-planes, one /-plane

;

it contains also

twelve A'-lines, four g'-lines, six i-lines.

Correspondingly, consider elements passing through the Pli'icker

point [14] ; there are of such (cf. the Frontispiece of the volume)

four A'-lines, four ^-lines, one ?-line

;

any plane of the complete figure H which contains one of these

lines necessarily contains the point [14]. There pass in all through

this point

twelve JK^-planes, four G-planes, six /-planes

;
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one such A^-plane is (21, 24, 23) ; one such G-plane is (21, 24, 14):

one such /-plane is ([14], [15], [16]).

And in fact, if we introduce the equations to the spaces and
planes of the figure ft, we can make the duality suggested by the

notation apparent analytically.

If now we suppose that in place of the figure S we consider the

figure iS", dually corresponding to S in three dimensions, we shall

have therein A'-lines, ^-lines and i-lines, but we shall have K-jJoints,

instead of X'-planes, G-points and /-points. If then we project on
to a plane, obtaining the figure ot, we shall have therein lines from
the lines of the figure *S", and points from the points of S'. And
therein the six theorems of incidence which we have obtained will

continue to hold.

It is this fact which is the outcome of the many investigations made
for Pascal's figure, of which the figure ur is a generalisation.

(4) We shew now how the exact Pascal's figure can be obtained

from a figure in three dimensions ; and it will appear at once that

this figure is a particular case of the figure S' which we have

considered.

Let .r, «/, z^ t be coordinates in three dimensions. Let C/ be a

homogeneous polynomial of the second order in oc^ y^ z only, andM be

a homogeneous polynomial of the third order in x, ?/, z only. Thus
t/ = may be regarded as the equation to a conic, in the plane

whose equation is ^ = 0; similarly 3/ = may be regarded as the

equation to a curve in this plane which has the property of being

met, by an arbitrary line of this plane, in three points, and is there-

fore said to be a curve of the third order, or a cubic. This cubic

meets the conic in six points, as follows from the elements of the

theory of elimination. These points we name, in some order,

P, Q', R, P', Q, R -, a cubic curve can be drawn through nine

arbitrary points, so that, by proper choice of M, we may regard

these six points as arbitrary points of theconic U = 0. Now consider

the equation 3I — tU = 0, which is homogeneous in the four co-

ordinates ,r, ?/, 2, t. It represents a surface which is met by an

arbitrary line of the threefold space in three points, say, a cubic

surface. But, in particular, any line of the threefold space which is

drawn through the point of coordinates (0, 0, 0, 1), say, the point D,

meets the surface in two coincident points at D, and in a further

point ; for this reason the point D is called a node of the cubic

surface. More particularly, however, there are lines which lie

entirely upon the cubic surface : for instance, whatever 6 may be,

if (.1', ?/, z, 0) be one of the six points for which U = and M = 0,

the point (x, ?/, z, 6) lies on the cubic surface, since its coordinates

satisfy M — 6U = 0, and, for different values of 6, this point is any
point of the line joining D to {x,y,z^O). Let the six lines so

\
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obtained, joining D to the six points P, Q',
. . .,be named, respectively,

j), q', r, p , q, r'; it is easy to see that these are the only lines passing

through D which lie on the cubic surface. Then, further, it is at

once clear that any plane meets the cubic surface in a cubic curve;

thus a plane containing two of the lines p,q\ ...,r', will contain a

further line lying entirely on the cubic surface. Thereby we obtain

fifteen further lines of the surface, any one of which may be denoted

by a duad symbol, such as q}-'. There are however no other lines

lying on the surface. For we have enumerated all those which pass

through D ; suppose then one which does not pass through D, and
consider the curve in which the cubic surface is met by the plane

joining D to this line; this consists of the line, and a curve of the

second order ; but this curve of the second order has the property

of being met in two points coinciding at D by every line in the

plane drawn through D, and must therefore itself consist of two
lines intersecting at D. The plane is therefore one of those before

considered, drawn through two of the lines p^q',..., r'. Now consider

the three lines of the surface, q, r and qr\ which lie in a plane.

The first line, q^ is evidently met by the four lines qp, qr, qp', qq\
in addition to qr ; the other line, r', is evidently met bv the four lines

r'p^ r'r, ?-'p', r'q ^ in addition to r'q. Beside the four lines which

meet both q and r at the point Z), there remain then, of the total

twenty-one lines of the surface, just six, namely those whose symbols

are the duads from p,r,p',q'. These six lines do not lie in the

plane of q, r and qr ; each must meet, then, either q, or r', or qr ;

but each meets two lines, other than q and r', of the lines of the

surface which pass through D ; it cannot, then, for example, meet
also the line q, since else three of the lines through D would lie in

a plane, and the conic U = would break into two lines, which we
suppose not to be the case. Thus these six lines all meet the

line qr.

Consider, for instance, rp ; the plane containing qr' and yp must
then meet the cubic surface in another line, by an argument applied

above ; this other line, meeting both qr and 7p\ will have for symbol

a duad not containing either q or ?•', or r or p ; this symbol is,

then, pq\ the symbols of the three lines qr\ rp', pq' containing all

the six symbols p,q,r,p', q,r'. In this way we see that there are,

beside the plane containing q and '/, three planes through the

line qr each containing two other lines with duad symbols. Whence
we see that the fifteen lines of the cubic surface, other than those

through D, lie in threes in fifteen planes, of which three planes

pass through every one of these lines.

If desired, the equations of the fifteen lines can be obtained, when
the six points of intersection of the conic C/ = 0, and the cubicM =
are given. For if ax + by + cz = 0, with ^ = 0, be the equation of the
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join of two of these six points, and we suppose, for instance, that c

is not zero, as the plane joining D to this line contains a line

of the cubic surface, the substitution for sr, in the quotient
M/C/, of — {ax + 6?/)/c, must reduce this to a form Ix + my\ the line

in question will then be given by the two equations ax +% + C2=0,
t — Ix — my = 0.

Having obtained the figure of fifteen planes, and the lines Iving

in threes of these, we can denote any one of the planes by a duad
formed from two of the six numbers 1, 2, 3, 4, 5, 6, and the line of
intersection of three of these planes by a syntheme of three duads,
such as 12 . 34 . 56, formed from the duads which represent the three

planes passing through the line. We shall then have a figure which,
combinatorially, has the same properties as the figure S' considered
above, specialised however by the fact that the fifteen lines are

arranged in sets of five all of which have a common transversal

passing through D, any of the lines meeting two of the trans-

versals. These sets of five are the systems of synthemes considered

above in (1). But the incidence theorems obtained above will hold

for the specialised figure ; and, after projection on to the plane ^= 0,

these give the properties of the Pascal figure which are the occasion

of the present note.

It may be remarked that on a general cubic surface, which does

not possess a node, there are sets of fifteen lines such as those here

denoted by the duad symbols qr\ together with twelve others, each

of the six lines here found passing through D being replaced by a
pair of skew lines. Moreover, we shall find that the general figure

n in four dimensions, here considered, is of fundamental importance
for the theory of the general cubic surface.

(5) We now give some particular examples of the theorv.

Ex. 1. Thepairs ofconjugate Steinerplanes. Let a, /S, 7, a', ^', 7'

denote the numbers 1, 2, . .., 6, in any order. In the figure H, there

pass, as we have seen, through each of .the three Cremona points,

/SV? 7 ot? ol'^' , three of the fifteen lines which are fundamental in

the figure (beside two A'-lines joining this point to the other two)

;

and the nine lines so obtained meet in threes in the points /3y,ya,al3.

The two Steiner planes {^'y', 7'a', a'/S') and (^7, ya, a^) are called

conjugate. In the Pascal figure there are two corresponding Steiner

points, which are in fact conjugate to one another in regard to the

fundamental conic. In the figure 6", we have two Steiner points ;

through each of these there pass three Cremona planes, intersecting

in pairs in three Pascal lines which pass through the point. The
three planes through one of the two Steiner points meet the three

planes through the other Steiner point in three triads of lines, of

which any two are then in perspective, the axis of perspective being

a Pascal line. By proiection to the plane ro- we obtain then a similar
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result, of which the elementary proof is indicated in more detail

below. (Ex. 5. See also v. Staudt, Crelle^ lxii, p. 142.)

Ex. 2. The Steincr planes and Ste'mer-Pliicker lines. The plane

determined by the Cremona points 23, 31, 12, is the same as that

determined by the three points F, G, H, of the six fundamental
points. The Steiner-Pllicker line determined by joining the Cremona
point 12 to the Plucker point [12], is that joining the two funda-

mental points F, G. The twenty Steiner planes are thus all the

planes each containing three of the six fundamental points, and
the fifteen Steiner-Pll'icker lines are all the lines each joining two of

these points. In the figure *S", the Steiner points are then the inter-

sections in threes, and the Steiner-Pllicker lines the intersections in

twos, of six planes, which, so far as the configuration is concerned,

may be taken arbitrarily. The corresponding points and lines in

the Pascal figure are then the projection of this very simple con-

figuration. (Cf. p. 218.)

E.v. 3. The separation of the completeJigure into sixjigures. In the

figure n, the notation at once suggests that we consider together

the set of five Cremona points such as 12, 13, 14, 15, 16 ; and there

will be six such sets, each point belonging to two sets. The five

points of a set are such that the join of any two is a Pascal line,

and the plane of any three is a Kirkman plane. In the figure S\
we have then six sets of five Cremona planes, of which any two
meet in a Pascal line, and any three in a Kirkman point. In the

plane ct, the sixty Pascal lines are thus divided into six sets of ten,

meeting in threes in ten Kirkman points, each of the Pascal lines

containing three of the Kirkman points. The configuration, in

each of the six partial figures is that of two triads in perspective,

with their centre and axis of perspective. These partial figures

were considered by Veronese.

Ex. 4. Tetrads of Steiner points each in threefold perspective

xcith a tetradofKirkmanpoints.

In thefigure H, thesixCremona
points 23, 31, 12, 41, 42, 43,

which lie in the threefold space

of the four fundamental points

F, G, H, Ry give four Steiner

planes,

a= (24,43,32), /3= (34,41,13),

7= (14,42,21), S= (23,31,12),

and four Kirkman planes,

a'=(12,13,14),y8'=(23,21,24),

7'=(31,32,34), S'=(41,42,43).

The planes a, a meet in the
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^-line ([23], [24], [34]), the planes /3, /3' meet in the ^-line ([31],

[34], [14]), the planes 7, 7 meet in the ^-line ([12], [14], [24]),
and the planes S, h' meet in the ^'-line ([12], [13], [23]) ; and these

are the four^-hnes which lie in the /-plane ([41], [42], [43]),

Hence if we consider the figure S\ we have two tetrads of points,

one formed by Steiner points, and the other by Kirkman points,

which are in perspective, the lines joining corresponding points of

the two tetrads being ^'-lines, and the centre of perspective being an
/-point.

But in fact, in this figure S\ the two tetrads are in perspective

in three other ways. In this figure, a, /5, ..., a', /3', .•• are points

;

the lines (a, S'), (/5, 7'), (7, /3 ), (6, a') also meet in a point, namely
the point (12, 13, [14]), or (12, 13, 06), a T-point. This fact we
may denote by writing

124,43,32 34,14,31 14,24,12 23,31,12
'''--' 141,42,43 31,32,34 23,21,24 12,13,14

The joins of corresponding points of these two tetrads are,

respectively, the Pascal lines 42 . 43, 31 . 34, 21 . 24, 12. 13.

Similarly the tetrads (a, /3, 7, S), (7', h\ a', /3') are in perspective

from the 'point (23, 21, [24]), or (23, 21, 56), and the tetrads

(a, /3, 7, h\ (/3', a', S', 7') are in perspective from (31, 32, [34]), or

(31,32,56). The two given tetrads, and that formed by the four

centres of perspective, form, therefore, what is known as a desmic
svstem of three tetrads, of which the points can be supposed to

have symbols of the form (cf. p. 213)

{P+Q+R+S, P-Q-R+S, -P + Q-R+S, -P-Q+R+S).

E,v. 5. Relation of the Cayley-Salmon lines and the Salmon planes.

The fifteen Pliicker points in the figure H lie in threes on the twenty

Cavley-Salmon lines, ^-lines, and in threes also on the fifteen Salmon
planes, or /-planes, forming a figure such as that occurring in the

proof of Desargues' theorem for two triads in one plane (cf. p. 214).

The figure is evidently dual with itself, in threefold space, and
has the same description in S' and in ct. Through each of the

fifteen points there pass, in S or S\ six planes and four lines, each

of the twenty lines contains three points and lies in three planes,

each plane contains four of the lines and six of the points. The
figure has been considered in Note I (§ 3).

Ex. 6. Let L^,F,IFandt/',F',f^ be two triads of points in a plane,

the lines LV\ W.WW meeting in G ; let the points (UV, W'U'\
(Fir, U'V), {WU, V'W) be denoted, respectively, by P, Q, R, and
the points {IJ'V\ WU\ {V'W, UV), (WV, VW) be denoted,

respectively, by P', Q', R ; so that, by the converse of Pascal's
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theorem, the six points P,Q',R, P ,Q,R' lie on a conic. Prove, (1), that

QQ', RR', UU' meet in a point, say, L; and, similarly, RR', PP', VV
meet in a point, say, M; and, likewise, PP,QQ\WW' meet in a point,

say, N. Let the points {PQ, R'P), {QR, P'Q'), (RP,Q'R') be denoted,

respectively, by X,Y,Z; and the points (P'Q\ RP), {Q'R', PQ),

(R'P', QR) be denoted, respectively, by X', F', Z. Prove, (2),

that X,L,X' are in line, as also F,iH, Y' and Z,N,Z' ; and that

W w

Q.

R'

P7

f^./v

R^

^
V

V

the lines XLX', YMY', ZHiZ' meet in a point. Prove also, (3), that

the lines YZ, PP', QR' meet in a point, as do the lines Y'Z , PP', QR;
that the lines ZX, QQ', RP meet in a point, as do Z'X', QQ, R'P;
and that the lines XY, RR', PQ' meet in a point, as do the lines

X'Y', RR',P'Q. Thusany twoof thetriadsl7,F,rF; L,M,N;X,Y,Z
are in perspective, as also are any two of the triads L/',F'.JF'; L,M,N;
X , Y', Z', the lines XU, YV, ZW meeting in a point, as do
X'U', Y'V, Z'lV.

Shew also, (4-), that the lines UU , VV, WW are Pascal lines each

for a proper order of the six points P, Q\ etc., on the conic, their

point of meeting, G, being a Steiner point ; and, (5), that the axis

of perspective of the triads 17, V, W and U', V', W is a Pascal line;
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that the axis of perspective of the triads t/, F, W and L, ill, A^

is a Pascal hne, and that the axis of perspective of the triads

t/', F', W and L, J/, A^ is a Pascal line; and that these three

Pascal lines meet in a Steiner point. Shew also, (6), that the lines

XLX', YMY', ZNZ' are Pascal lines, meeting in a Kirknian point,

that the lines XU, YV, ZW are Pascal lines, meeting in a Kirknian
point, and that the lines X'U\ Y'V\ Z'W are Pascal lines, meeting
in a Kirknian point.

These facts may all be obtained by application of Desargues"*

theorem.

They may also be obtained by shewing that, with that association

of P, Q',/2, etc. with the systems which has been adopted in this

note, the points U, F, W, U\ V\ W are the respective T-points

(56, 21, 23), (56, 12, 13), (56, 31, 32), (64, 21, 23), (64, 12, 13),

(64,31,32), so that the lines UU',VV',WW' are the respective Pascal

lines (23,21), (12,13), (31, 32). Then that the points L,M, A^ are the

respectiveT-points(45,23,21),(45,12,13),(45,13,23). Then that the

points X, Y, Z are the respective T-points (25, 63, 61), (15, 62, 63),

(35, 61, 62), and the points X\ F', Z' are the respective T-points

(24, 61, 63), (14, 62, 63), (34, 61, 62), so that the lines XX', YY\ ZZ'
are, respectively, the Pascal lines (63,61), (62,63), (61, 62) and the

lines YZ, Y'Z'"ave, respectively, the Pascal lines (24, 26). (25, 26),

with similar results for ZX, ZX, XY, X'Y'. The points (QR',PP'),

(RP', QQ'), (PQ', RR) are, respectively, the T-points (31, 56, 54),

(23, 56, 54), (12, 56, 54); the lines XU, X'U', YV are, respectively,

the Pascal lines (41, 43), (51, 53), (42, 43), and so on.
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