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The figure formed from six points in space of four dimensions.
By
H. W. Ricauonp, King’s College, Cambridge, England.

It was my aim when commencing this sketch to illustrate the fact
that a very large proportion of the knmown properties of certain much
studied families of points, both in a plane and in space, (and therefore
also of the reciprocal families of lines and planes), are intuitive conse-
quences of the nature of a very simple figure in space of four dimensions, —
the figure derived by the simplest operations of geometry from six points
chosen at random in such space. The families of lines and points and
planes referred to include (1) the fifteen lines which join six points of a
curve of the second. degree, — Pascal's Hexagram; (2) certain sets of
fifteen of the ;double tangents of a plane curve of the fourth order;
(8) fifteen points in space which are nodes of a surface of the fourth
order; (4) any fifteen of the modes or of the smgula.r planes of Kummer’s
quartic surface; as well as other families less known than these. To
extend or even to quote the long list of published properties of these
figures was no part of my plan; for the tendency of recent times is, very
rightly, to turn in weariness from the apparently interminable successions
of elementary theorems which geometry sometimes presents to us. But,
on the other hand, to prove that practically all results hitherto established
for the simplest and most fully jnvestigated of the above families belong
in"a wider sense to all, and to refer these results to a common simple
cause, appeared to me a legitimate theme. In concluding this note I find
myself rather of a mind to enlarge upon the fundamental necessity for
the existence of families of points possessed of these properties, as an
immediate consequence of the axioms of four-dimensional space, that four
points determine a single space of three dimensions and so forth: yet so
large a part of this sketch consists of a review of the work of others, —
as references given in the text will shew, — that the somewhat illogical
method pursued was almost forced upon me. From results already

Mathematische Annalen, LIIL 11



162 H. W. Ricmmonp.

established concerning Pascal’s Hexagram, cubic surfaces, and quartic
curves, a system of equations is derived, which are seen to apply properly
to space of four dimensions, and are so interpreted: the final conclusion
reached by this method is that the properties so obtained are fundamental,
and might be considered, without reference to coordinates or curved loci,
at the outset of descriptive geometry.

- § 1.

On Pascal’s Hexagram,

Although Pascal’s original theorem — that, when the vertices of a
hexagon lie on a curve of the second degree, the intersections of its
opposite sides are collinear, — dates from as long ago as 1640, no
advance towards the development of the figure now commonly known as
Pascal's Hexagram was made till the present century. Brianchon’s theorem
concerning six tangents of a curve of the second class, obtained by
reciprocation in 1806, cannot, according to modern ideas, be ranked as
distinet from that of Pascal; the field for nearly all later research was
opened by Steiner in 1828, when he pointed out that from the same six
points of a conic sixty hexagons may be formed, each of which gives
rise to a different Pascal line. During the next fifty years the figure of
these sixty lines attracted the attention of Steiner, Pliicker, Cayley, Salmon,
Kirkman, Hesse, v. Staudt, Grossman, Bauer, Schroter, and others, until
finally in 1877 the results of their investigations were summed up and
extended by Veronese, (Att: della R. Accad. dei Lincei, vol. 1, series III,
pp. 649—703). Inasmuch as Veronese’s memoir, (which is prefaced by
an excellent historical sketch of the subject, with full references to the
‘works' of earlier writers), contains proofs of all previously known theorems
as well ‘a8 of & large number of new and original ones, we shall class
together:all' these properties under the name Veronese's properties of Pascal’s
Hezagram.

The same volume of thd A#: della R. Accad. dez Lincei contains a
second memoir (pp. 854—874) of even greater importance, which throws
an entirely new light upon the nature of the figure. Cremona, to whom
Veronese had submitted his manuscript, was led on reading it to the
discovery that the whole series of theorems established therein follows
intuitively from the obvious properties of the lines which lie upon a
surface of the third order with a nodal point. On such a surface lie six
Iines passing through the nodal point, generators of the quadric come
which touches the surface there, and fifteen othetrs, one in the plane of
each pair of the foregoing: let the former be ‘denoted by symbols a, b,
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Figure of 6 points in space of 4 dimensions. 163

¢, d, ¢ f, and the latter by pairs of these symbols abd, ac, ... ef, in such
a way that ab is the line which meets the lines a and b of the former
set. If now this system of lines be projected upon a plane, the nodal
point being the vertex of projection, the plane of the projected system
cuts the lines a, b, ¢, d, ¢, [ in gix points (also called g, b, ¢, d, ¢, f) situated
on a curve of the second degree; and the projection of the line @b is a
line (also called ab) which joins the points a and b: we thus have fifteen
lines which join'in pairs six points of a conic section, the foundation
from which the complete figure of Veronese's memoir is built up.

But the plane figure is in reality far less simple than the three-
dimensional. In the former the fact that every two lines intersect causes
unnecessary confusion; for it appears upon examination that Veronese’s
memoir nowhere contains any property concerning the point of inter-
section of two lines, except when the lines of which they are the pro-
jections actually intersect; not only this, but the nature of the three-
dimensional figure renders obvious all (or very nearly all) Veronese’s
results: — thus for example a proposition that three lines are concurrent
needs no further proof when it can be pointed out that they are pro-
jections of the lines of intersection of three planes: — Cremona’s three-
dimensional figure in fact contains all that is essential to the proof of
Veronese's theorems and is free from what is irrelevant; moreover the
vast numbers of lines and points which make up the plane figure are
obtained by projecting the. infersections of & comparatively small number
of planes in space. Cremons's methods are purely geometrical, -but.the
investigation is very easily conducted by help of an extremely simple snd
symmetrical system of equations; — not those given by Cremona at the
end of the memoir to which we have already referred, but a system
derivable immediately from the form to which he has elsewhere reduced
a non-singular surface of the third order: see Math. Annalen XIII, p. 301;
or Salmon-Fiedler, Anal. Geom. des Raumes, p. 403: a full investigation
of Veronese’s results will be found in the Transactions of the Cambridge
Philosophical Society, Vol. XV, p. 207 from whwh I now quote the
following.

Given a surface of the third order, havmg a nodal point and no
further singularity, & unique family of six planes z, =0, z, = 0,.

= 0, may be determined, such that the surface is represented b_y
the equa.tion

7" 4 2g* 4+ 2® + 22 + 2 + 2 = 0;
Z@xbH=0; (r=1234,5,6);
mth the following conditions,

or
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2)=0; ZkPe)=0; Zk)=0; Z(&3=0:

the constants %, %y, ... %, are the coordinates of the conical point, and
the two identical linear relations which connect the six coordinates z, of
any point are stated explicitly. The six lines a,b, ¢, d, ¢, f, which pass
through the nodal point are the intersections of the surface with the
tangent cone, Z(k.x,*) = 0, and need not be further particularized; while
each of the fifteen lines; ab, ac,. .. ef, is represented by one of a family
of fifteen exactly similar equations of which

Ty Ty=y + 2, =25 + 2, =0
is the type: the lines ab, ac, ete. therefore lie by threes in the fifteen

planes 2, 4+ 2, =0, according to the following or some -equivalent
gcheme: — ‘

ab, cd, ef in z,+2,=0|af, bd, ce in 23 +x,=0|ad, be, ef in 254 2,=0
“ac, be, df..:m1+w3=0 aebe, df ... xg+2,=0 ae, bf, cd... 25+ 2,=0
ad, bf, ce... x4+, =0 ac, bf, de... z,+2;=0|af, be, cd... 2, 4-2;=0
ae, bd, cf ... v+ x,=0 | ad, be, cf ... x,+2,=0 | ac, bd, ef ... x,+ 2,=0
af, be, de...x+xy==0|ab, cf, de...w,+2,=0 | ab, ce, df . .. 25+ 2,=0

all other possible schemes can be derived from this by suitable inter-
change either of the symbols a,b,¢ dre f, or of the suffixes 1,2, 3,4,
b, 6; the equations of any one of the fiffeen lines can be at once selected.
A few of the chief properties of the Hexagram are proved below, the
names of the various types of lines and points being in all cases adopted
from Veronese’s memoir.

(@) If a hezxagon be constructed whose vertices are the six points
a,b, ¢, dy ¢, f; (which lie on a conic) taken in any order, the opposite sides
intersect in three- points situated in one of sixty Pascal lines. For
example, in. the case of the hexagon abefdc, the three alternate sides
ab, ef, d¢’ are projections of lines which lie in the plane x, + 2, = 0, and
be, fd, ca dre projections of lines which lie in 2, 4~ 4, = 0; therefore the
intersections- of ‘@b with fd, of be with de, and of ¢f with ca, being
projections of three points which lie on — 2, = x, = x,, the line of
intersection of the two. planes, are themselves collinear. The symmetry
of our system of equations enables us to infer, by interchanging the
suffixes 1,2, 3,4, 5, 6, in all possible ways, that there are sixty of these
Pascal lines, each the projection of a line such as — 2, — @, == 1.

(B) The Pascal lines meet by threes in sixty Kirkman points,
there being a correspondence between each Kirkman point and one
particular Pascal line; (the projection of the point — 2, = 2, — z; = =,
is a Kirkman point, to which the Pascal line given in () corresponds).
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When three Pascal lines meet in a Kirkman point, their corresponding
Kirkman points lie on a Pascal line. These points and lines fall into
six figures of ten Pascal lines and ten Kirkman points: each figure
consists of the projections of the intersections of five planes such as

2 4 a,=0, 2+2=0, o+2,=0, #+2=0, z+1,=0,
and may be resolved in ten different ways into two perspective triangles
with their axis of homology.

(¥) The Pascal lines meet also by threes in twenty Steiner points,
which lie by fours on fifteen Steiner-Pliicker lines: these are projections
of points such a8 #, — %, = 2, = 0, and of lines such as z, =z, =0,
respectively, the edges and vertices of the figure formed by the six planes
#, =0, 2,=0,...2,=0: the figure formed by the Steiner points
and Steiner-Pliicker lines may therefore be resolved into three per-
spective triangles with their three concurrent axes of homology in twenty
different ways.

(0) When three Pascal lines meet in a Steiner point, the corre-
sponding Kirkman points lie on one of twenty Cayley-Salmon lines
which meet by fours in fifteen Salmon points: projections of x, = &; =z,
and of z, = x, = x; = ¥, respectively.

(¢) Six lines such as bg, ca, ab, ef, fd, de, touch a conic: for they are
projections of six lines of which each of the first three meets each of
the last three, and which are therefore generators of a quadric surface:
in fact 2, 4 2, + #5° = 2, + 2* + 5"

The system of equations here used, being unique and absolutely
symmetrical in form, gives an immediate answer to all questions of
correspondence between the different lines and points, or the number of
those of a given type, and all Veronese’s results may be verified without
difficulty. Upon closer investigation I find that by projecting the complete
system of intersections of the two families of planes x, -y =0, — called
by Cremona “ritangent’ planes and Pliicker planes respectively, — a figure
is obtained which in all except a few unimportant details is coextensive
with that developed by Veronese: together with proofs, similar to those
just quoted, of practically all his theorems. There is a certain slight
advantage gained by applying the name Pascal’s Hexagram to the figure
go defined: we may do so without injustice to earlier writers: while it
seems desirable that the statement which will repeatedly be made in the
next section, that a family of lines possesses the properties of Pascal’s
Hexagram, should carry with it a clear and definite meaning: it is not
implied that the list of results shared by these families of lines and the
Hexagram cannot be extended.
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§ 2.
On plane systems of lines which posses Yeronese’s properties of
the Hexagram.

It will be observed that, in the course of the foregoing verification
,%?Vefronese s results; no use whatever is made of the conditions (k2 =0
;;a‘hd Z(k,’) == 0, which connect the coordinates (2) and the constants (k):
xt 18 immaterial whether these conditions are satisfied or not. In order

f; a fsmﬂy of coplanar lines should possess all the properties established
m Veroneses memoir for the fifteen lines which join six points of a
G;)mc, all that is necessary is that they should be projections of fifteen
lmes m apsce that satisfy the family of equations similar to

;?‘.:;‘;,g;__(x;,_ EFURE By Ty = T“‘”‘—xs'*'xo—oy
,{l;) . when

-

5 &+ By F 2+ 2+ G+ 2 =0
'or, a8 '(Yremona. expresses it, fifteen lines which lie by threes in fifteen
‘planes Now' it is clear that the family of lines (1) lie upon

. % 4 @ 4 2 4 20 + 2 + 2= 0,
8 cublc surface without singularities (see Cremons, Math. Annaler XIII,
p. 301; Salmon-Fiedler p. 403) and form such a set as is left when
from the twenty-seven lines of the surface twelve are omitted which form
-8 double-siz. (Schlafli, Quarterly Journal of Mathematics, Vol. 2, pp. 55
-and, 110.) In his memoir Cremona points out that the omission of a
‘dowblesix from the lines of & cubic surface would furnish an example
' ;gfeemh :a:family of lines, but goes no further, being apparently not
-awape, that gome years earlier Geiser had discussed the progectxons of the
. }m@&u{ mgebio surface in the well known paper, published in Vol. I of
Mmmkg p- 129, in. which the connexion by this geometrical method
“between the. lines of a-gurface of the third order and the double tangents
~of & plase -turve pi Jhe femrhb order was first made known. If a point
f K be taken,, the cone. vnth vertex K which envelopes the cubic surface
s tauched atb two dmtmct pomts by every line which lies on the surface, -
iz ‘the two: pomts where the line cuts the first polar of K: every plane
section of the envelopmg cone will therefore have the projections from
yertex K of- the kyeng gqygxg.hnes of the surface as double tangents.
When the position .of .K..is ‘unrestricted, a plane section of the enveloping
cone is & curve of- tb\ansxxth order having six cusps which lie on & conic:
to such a eurve belong fwsnty seven double tangents, from which we may
In thirty-six different ways select a set of fifteen possessing all Veronese's
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properties of Pascal’s Hexagram. But the special case when K lies upon
the cubic surface is of greater interest: the section of the cone with
vertex K which envelopes the surface is then a curve of the fourth
order without singularities; twenty-seven of whose double tangents are
projections from vertex K of the lines which lie on the cubic surface,
the remaining double tangent being the intersection of the tangent plane
at K with the plane of the curve: moreover I find that if Schlifli’s
notation be adopted for the lines of the cubic surface, and that of Hesse
for the double tangents of the quartic curve, (see Crelle, Vol. 49, p. 243
and Vol. 68, p. 176; or Salmon, Higher Plane Curves), it is legitimate
to denote the projections of Schlifli's (a,, ay, a5, a4, a5, ay), (by, by, By, by, by, bs),
(Ca3 €135 C1as €155 €18)s (Cams Caas Ca8s C36)s (Coas Cosy Coss Cans Cass Cos), DY Hesse's
(ag, bg,cg,dg,eg,19), (ah,bh,ch,dh, eh, [k), (ab,ac, ad,ae, af), (be,bd, be, bf),
(cd, ce, cf, de, df, ef ) respectively, the last double tangent being represented
by gh. Omitting from the lines of the cubic the double-six composed of
the first twelve of these lines, we arrive at & theorem which may be
stated in the following somewhat remarkable form:

The fifteen double tangents of a plane curve of the fourth order denoted
in Hesse’s Algorithm by symbols formed of pairs of the six letlers a, b, c,
d, e, f, possess all the properties of the Pascal's Hexagram formed by the
lines (naturally represented by the same symbols) which join in pairs siz
points, a,b,¢c,d,6,f, of a conic section.

For example, in the case of the double tangents of a quartic curve,
just as in the Hexagram, the intersections of ab and fd, of be and d,
of ¢f and ca lie on a line, one of a set of sixty similar Pascal lines,
which meet by threes in sixty Kirkman points and with them fall into
six figures of ten Pascal lines and ten Kirkman points, each figure
being that familiar to us as the projection of the lines and points of
intersection of five planes in space: the Pascal lines also meet by three
in twenty Steiner points (projections of the vertices of a three-dimen-
sional figure formed by six planes) which lie by fours in fifteen lines,
(projections of its edges):... the double tangents bc, ca, ab, ef, fd, de,
touch a conic section;... and so on through the whole category of
Veronese’s propositions. [The names Pascal line, Kirkman point,
Steiner point are adopted from the Hexagram for convenience: also the
notation of Salmon’s Higher Plane Curves is slightly altered, the symbols
1,2,3,45,6,7,8 being there used in place of our a,b,¢,d,¢,f, g, h.]

A very remarkable fact, not however without parallel, comes to light
when we seek the distinctive geometrical properties of such a set of
fifteen double tangents. The rule of the bifid substitution, (due to Cayley
and Hesse, and explained in Salmon), makes it clear that if we select -
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any two of the twenty-eight double tangents, (e. g. ag and ak), and the
five pairs (by, bhk; cg, ch; dg, dh; eg, eh; fy, fh) whose points of coytact
lie on a conic with those of the first two, amy fifteen of the remaining
sixteen form such a set. Thus it appears that, whereas in Pascal’s
Hexagram, or in the case of double tangents of the sextic curve above
mentioned, we have to deal with sets of fifteen lines which possess a
long series of properties owing to a quite definite cause, we here find
the fiffeen lines joined by a sixteenth which forms with them an ab-
solutely symmetrical family, any fifteen of whose members possess all the
properties of the former sets. Sense of symmetry alone shews the
necessity of considering sets of sixteen double tangents of the quartic
rather than fifteen; but it will also be seen that, in asserting that the
- fifteen double tangents ab, ac, ...ef, possess all' the properties of the
Hexagram, we do not exhaust their properties; these properties in fact
- deal with only forty-five of thei; intersections and ignore the ren'laini:ag
sixty, which are of equal importance in the case of the quartic curve,
but coalesce by tens in the Hexagram: for instance, it is easy to verify the
statement that.the intersections of ab with ac, of ad with ae, and of
bc with de, are collinear in the case of the quartic curve; the same
statement is nugatory in the case of the Hexagram, and is false in the
case of the double tangents of the six-cusped sextic curve spoken of
above. This matter will be considered more fully hereafter.

The relations between the different families of sixteen double tangents,
of which the quartic has sixty-three, and other details, which possibly
would repay investigation, must be passed over altogether. In the case
of a quartic having a node, the properties of the Hexagram belong to

. any fiftéen of the sixteen double tangents: they must belong also in a
modifiéd forti to certain sets of lines composed partly of double tangents
and “partly of tangents from the node.

SR - § 4.
.. Extension to space of four dimensions.
~ As the outéome of - the investigations of §§ 1, 2, we may supplement
Cremona’s theorem, — that all Veronese's properties of the Hexagram
follow intuitively- from" the geometrical nature of any projection of a
three-dimensional figure ‘composed of fifteen lines which lie by threes in
fifteen planes, — by tH% statement that ‘All Veronese’s results are
established almost instantaneously by analytical methods in the case of
any projection upon & plane of a three-dimensional figure, of which the
nucleus is a set of fifteer lines satisfying a family of fifteen equations
such as S ST
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@ wy=—ay + 1y =2 2, =0,
1) when

@y + @y + 25 + 2, + %5 + 2, = 0:

and which consists in its entirety of the two families of planes 2, 3=0,
and their intersections” But having thus as it were translated Cremona’s
geometrical theorem into the language of analysis, we cannot fail to see
that it may be at once extended and simplified. For a system of six
homogeneous coordinates connected by a single identical linear relation
should be interpreted as referring to four-dimensional loci; — dealing of
course with descriptive, to the exclusion of metrical, properties.

[A uniform nomenclature for geometry of four-dimensional space has
not yet béen agreed upom, certain words, (e. g. plane and surface), being
used by different writers in different senses. I shall here call a flat space
of n dimensions an R,; so that a straight line is the same as an Ri;
the term a plane will always be used to denote an Ry, and the term a
space without qualification as to the number of dimensions to demote
an R;. Curved loci of one and two dimensions are called curves and
surfaces respectively, and the name variety is here restricted to curved loci
of three dimensions: thus, in an R,, varieties, surfaces and curves are deter-
mined respectively by one, two, and three relations among the coordinates
of their points. Elementary properties of an R,, e. g. .that in it two
planes intersect in a single point, or that three given lines are met by
one and only one other line, will be assumed; but references to Veronese’s
Fondamenwti di Geometria, Padua, 1891, Part II, Book I; to the memoir
by the same author, Math. Annalen, XIX, p. 161; and to Whitehead,
Universal Algebra, Cambridge, 1898, Book III, may not be out of place].

Equations (1) then must be interpreted as referring to loci in an R,;
they represent in fact fifteen planes which lie by threes in the fifteen
spaces #; + %, = 0. To assume, as we have done hitherto, that the six
coordinates (z) are connected by a second identical linear relation which
we do not need to specify, is to confine our attention to such parts of
the four-dimensional figure as lie in one arbitrary R,, and is as unscientific
as the attempt to realize the nature of a figure in space by discussing
its section by a single arbitrary plane: mereover analytical methods
bring into very clear prominence the fact that those properties of Cremona’s
three-dimensional family of fifteen lines of which use has been made, are
precisely the properties which it possesses in virtue of being the section
by an R, of our four-dimensional family of fifteen planes. Again the
whole of the four-dimensional figure must be derivable from a set of
six spaces #, =0, 2,=0,...2,=0, whose equations satisfy Z(ay) =03
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in other words it springs from an extremely simple source, six spaces
chosen at random in an R,: for all these reasons-the four-dimensional
figure is to be preferred. '

. Since Cremona proceeds to project his family of fifteen lines upon
a plane, we now project the four-dimensional family of planes (1) upon
an R, by means of lines drawn through an arbitrary vertex, and thus
arrive at a three-dimensional family of fifteen planes, every plane section
of which is a family of lines such as Cremona obtained, and such as we
have discussed in §§ 1 and 2: to this three-dimensional family of planes
belong properties analogous to, but at once simpler, more extensive and
more fundamental than those of the families of lines considered in §§ 1
and 2; properties which would be obvious to us intuitively if we could
picture to ourselves the figure in R,; and which might without difficulty
be established by pure geometrical reasoning; but which may also be
obtained almost instantaneously from equations (1). The investigation of
these properties may clearly be accomplished wholly by means of straight
lines, planes, and spaces, — loci, that is to say, of the first order; but
as before it is convenient to consider certain curved loci in connection
with them. Thus the planes (1) are a part of the locus
@) o'+ o'+’ + 2+’ +2°=0, or X@*)=0,
an extremely interesting variety of the third, denoted in what follows
by V;, some of whose properties have been briefly stated in a note by
Segre (dtti d. R. Accad. di Scienze & Torino, XXII, p. 547—557). When
we project the planes (1) upon an R;, we also (following the procedure
of Geiser) construct the lines which pass through the vertex of projection
and touch V;; they intersect the R, in a surface touched by the pro-
jection of each of the planes (1) at each point of & conic section: the
degree of this surface as & rule is six, but is reduced by two in the
important special case when the vertex of projection lies on ¥,; moreover,
Just as before, the curious fact presents itself that, while for arbitrary
positions of the vertex of projection we have to deal with a family of
fifteen planes possessed of a certain set of properties, in the special case
the fifteen are joined by a sixteenth which forms with them an absolutely
symmetrical system such that any fifteen possess all the previous pro-
perties. In the special case the surface is that known as Kummer's
quartic surface, which has sixteen singular points and sixteen singular
tangent planes: a plane section of this surface and its singular planes
obviously consists of-a quartic curve and sixteen of.its. double tangents.
We now learn that the sixteen form a set such as we noticed in § 2,
and further that, —(although the statement that sny fiffeen of them
possess all Veronese’s properties of Pascal’s Hexagram includes almost all
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that the investigations of Steiner, Hesse and others established concerning
such properties of the double tangents of a plane quartic curve, and
much beside), — all these properties of the plane curve are in reality
consequences of more fundamental theorems concerning Kummer’s surface, —
which in their turn depend upon the nature of the four-dimensional
figure.

In the next section the foregoing aud kindred matters will be con-
sidered in the simpler and more convenient shape in which the principle
of duality enables us to exhibit them. From six points chosen at random
in a space of four dimensions a family of fifteen lines which meet by
threes in fifteen points, reciprocals of the planes (1), will be derived: our
intuitive conception of the natare of this four-dimensional figure suggests
a seéties of properties of the fifteen points in space where the fifteen
points in space where the fifteen lines cut any R;, and from these we
can deduce properties of any family of fifteen points in a plane which
are the projections of such a family of fifteen points in space: the plane
families of points will prove to be the reciprocals of the families of lines
discussed in § 2, and their properties to be identical with the reciprocated
form of the long list of theorems gradually worked out by mathematicians
in the particular case of Pascal’s Hexagram, which form the substance
of Veronese’s memoir. ,

. : The reciprocal of Segre’s cubic variety V; is a variety of the fourth
otler V,, of which the fifteen lines spoken of above are double lines:
considering the section of this by an R;, we see that the three-dimen-
sional family of fifteen points mentioned in the last paragraph are double
points of a quartic surface, and form a configuration studied by Kummer
and others; see Salmon-Fiedler, p. LVIL. Should the section be made
by an R, which touches V,, the surface has a sixteenth node, and is
again Kummer’s quartic surface. In order to arrive at the reciprocated
form of Pascal's Hexagram a two-fold limitation of the generality is
necessary: we must first see that the section of the four-dimensional
figure is made by an R; which touches ¥,, and then take the point of
contact as vertex of projection when we project the fifteeen points on
a plane.

§ 4
The figure formed by six points in an R,.

[In equations (1) and (2) we have made use of a system of six
homogeneous coordinates (z) which were connected by an identical linear
relation X(x,) = 0; clearly therefore, although the coordinates of any
kmown point are determined without ambiguity, yet when we work with
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Uy, Ug, .. . U, coordinates of spaces, where X(u.z,) = 0, each coordinate
(w) is liable on account of the relation X(z.) =0 to be increased by
the same quantity and we can only expect relations among the differences
of the coordinates (u): (to explain the matter more satisfactorily, we
must consider the coordinates (z) as referring to an R, which forms a
part of an R;). In what follows we discuss for the most part the figure
reciprocal to the foregoing, so that coordinates of spaces (u) are definite
and connected by the relation X(u,) = O; while coordinates of points (z)
may all be increased by the same quantity without affecting the equations
in which they occur: it is however allowable to impose a condition
Z(2,) =0 on the coordinates () should it seem desirable, and we shall
always suppose this done].

Let it be agreed to denote under the title Hexastigm the figure
composed of six points or verfices 1,2, 3, 4,5,6 chosen at random in an
R,; the fifteen lines or edges 12, 13, .., joining each two vertices; the
twenty planes or faces 123,124, ... and the fifteen spaces 1234, 1235, ..
determained by each set of three or four vertices respectively. The face
123 is said to be opposite to the face 456, and the edge 12 to the face
3456; three edges such as 12, 34, 56 will, by a slight extension of the
meaning of the term, be described as three opposite edges of the Hexastigm.
To the fifteen points of intersection of any edge with the opposite space
I give the name Crosspoints of the Hexastigm, demoting by P,, the
Cross-point which lies on the edge 12. Since the cross-points Py, P;,, Py
of three opposite edges lie each in the three spaces 3456, 5612 and 1234,
they are collinear; in fact they lie on the unique line which intersects
the. three apposite edges 12, 34, 56: such a line I call a Transversal of
: the -Hexastign. ’

. Th&orem. The fifteen transversals of a Hexastmm are a family of
ﬁﬂem lines: which meet by threes in fifteen points, the Cross-points of the

‘Fhe: point" of the edge 12 which with the cross-point P, divides
the édge harmoically is denoted by @,, and is called a harmonic point
of the Hexastigni. - It has been tacitly assumed that no five vertices of
the Hexastigm lie-in an Ry, (and d fortiori that no four are coplanar,
no three collinear, and no two coincident); we may therefore take
%y ==0, uy=0,...9,=0, to be the equations of the six vertices
1,2,8,4,5,6, and Z(u,)=0 to be the relation connecting them: we
then arrive at the following equations for determmmg the above men-
tioned points, lines;. ete.

Vertex 15 u, = 0; or 2y =2 = &, = &y = Z;:
Edge 12; Uy = Uy == 03 or &y =T, = Ty = Z*
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Face 123; Uy == g = uy = 0; or z, =z = 2;:

Space 1234; Uy = Ug = Uy = %, = 0; or z; = x;:

CrOSS'pOint .P12; ul + “2 = O; xy = x?; Xy == x4 == x5 = xs:
o 1

Harmonic point @43 Uy = thy; & (T FTg)= 03 =T, = 2 = %

Transversal P, Py,, Pyg; u, + g = uy + 4, = s + s = O;
Or 2y == Zg; Ty = X5 Tg == Xg.

Since it has been agreed to impose the condition X(z,) =0, the

coordinates of the harmonic points @, are
2+ 2y =0; z, =2, =2, =z, = 0.

Consider the parts of the Hexastigm which lie in one of its spaces, for
example the space 1234. As the simplest way of describing the well
known three-dimensional figure formed by them, it may be said that
under special circumstances the middle points of the edges of the tetra-
hedron 1234 are cross-points of the Hexastigm, the infinitely distant points
of the edges are harmonic points; the centre of the tetrahedron is the
cross-point Py, and the centre of each face is the point where it is
intersected by the opposite face of the hexastigm: the general case may
be derived projectively. Thus we see

Py, Py, Qy, are collinear;

Ques Qis» @ss, are collinear;

Py, Py, Poyy Pyyy P, Q1ss Quus 870 coplana.r,

Py, Py, Py, s, @ssr Orer are coplanar;

Qrs) Qis» Qi Yosy Psar @a, are coplanar;
and other similar results, which the above equations-verify immediately.
It further appear that ten harmonic points such as @5, Qis, @is Quss
Qusy Qosr Qrs) Uy @ss) @iy lie in an Ry, whose equation reduces, in
virtue of the relation Z(x,) =0, to z, = 0: the harmonic points are
therefore the points of intersection, four by four, of six spaces

2, =0, =0, ...2,=0.
But these are polars of the six vertices of the hexastigm with respect to
an imaginary variety of the second order, Z(2,%) =0, or Z(u,2) = 0;
the harmonic point of any edge is therefore the pole of the opposite
space of the hexastigm, and the figure is self-reciprocal with respect to
this imaginary quadric variety.
The ten spaces such as

Ty + Ty + Xy =2 + x5 + %
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form & remarkable family whether looked on as a separate configuration
or as & part of the whole figure: each meets nine edges of the _he%astigm
in their cross-points and the remaining six edges‘ (WhI‘Ch lie in two
opposite faces of the hexastigm) in their harmonic Pomts; and each
contains six transversals of the hexastigm. The reciprocal family of
ten points in the figure derived from six arbitrarily chosen spaces
z, = 0, are the double points of Segre’s cubic variety
(=0, Z(z)=0.

At preseﬁt the only means of distinguishing any one transversal
from its fellows is to mention the edges met by it: but by adapting
yet another well-known result to our purpose we obtain a simple nota-
tion for the different transversals, which is in harmony with the notation
of §8 1 and 2. For we can in six distinct ways select a set of five
transversals which meet all fifteen edges of the hexastigm, each trans-
versal being a constituent of two such sets: if then the sets be denoted
by letters a, b, ¢, d, ¢, f a convenient notation for the transversal which
belongs to set @ and set b is the symbol ab. In the appended table
each transversal is given in the new notation, and after it the edges
which it meets

ab | 12, 84, 56 | be | 16, 24, 35 | ce | 14, 23, 56
ac | 13, 25, 46 | bd | 15, 23, 46 | ¢f | 15, 26, 34
ad | 14, 26, 35 | be | 13, 26, 45 | de | 16, 25, 34
ae | 15, 24, 36 | bf | 14, 25, 36 | df | 13, 24, 56
af 16,23, 45| cd | 12, 36, 45 | ef | 12, 85, 46

Two transversals, as for example ab, ¢d, whose symbols do not contain
‘the same  lotter, intersect in & cross point of the hexastigm. Let
us now conmsider briefly the properties of the Hexastigm which lead
to the: propexties. (a), (8), (), (8), (¢) of § 1. As before I apply to each
line and plane: the- name of the discoverer of the corresponding locus in
Pascal’s Hexagram. ‘ '
() Through each of two cross points Py, P, pass three trans-~
versals, ab, cd, ef aud ac, be, df respectively: each of the former inter-
‘sects one of the latter, (viz. in onme of the cross-points Py, Py, P)
and in therefore ‘coplanar with it: hemce the three planes which contain
respectively the transversals ab and fd, be and de, ef and ca pass through
the Pascal line joining the cross points Py, and Py,.
(B) Three Pascal lines which join the cross points P, Py, Py,
lie in one of sixty Kirkman. planes; and the Pascal lines and Kirkman
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planes fall into six figures of ten lines and ten planes. To obtain such
a figure, we join the cross-points Py, Py, P, Py, P,,, of five concurrent
edges of the Hexastigm in all possible ways by lines and planes; or we
may equally well derive it from the intersections of spaces which contain
four of these cross-points.

() Three Pascal lines P, Py, Py, lie in one of twenty Steiner
planes, identical with the faces of the hexastigm, and the Steiner-Pliicker
lines in which the Steiner planes intersect by fours are identical with
its edges.

() The Kirkman planes lead without difficulty to the Cayley-Salmon
lines (u, = u; = u,) and Salmon planes uy = u, = uy = u,.

(¢) Of the six transversals which lie in the space

@y + x5 + @ =2, + 2 + 2, =0,

viz. ad, ae, de, be, bf, cf, each of the first three intersects each of the
second three: they are therefore generators of a quadric surface.

In a discussion of the four-dimensional figure alome it would be
unnecessary to mention properties so obvious as these; it is however
worth noting that in this four-dimensional figure Cayley-Salmon points
and Salmon planes are the polar reciprocals of the Steiner planes and
Steiner-Pliicker lines with respect to the quadric XZ(z,®) = 0: the con-
nection is lost when we return to three or two dimensions: and again
that the spaces mentioned in (¢) are in reality of far higher importance
than appears above. A discussion of the properties of Segre’s cubic
variety, or of the no less interesting reciprocal variety of the fourth order

(Z@)) =42@=Y); 2Z()=0;
does not fall within the scope of this sketch: I hope soon to investigate
the matter elsewhere. Such a discussion would shew how it is that
the families of fifteen points in space derived from the transversals. of
a hexastigm by section with an Ry, or the plane families which are
the projections of these, present themselves also in connexion with
certain curved loci, (and would very probably throw light on the nature
of these loci in the case of the quartic surfaces with fifteen or sixteen
nodal points). But it is, I think, clear that this, although the historical,
is not the best or most scientific way of approaching families of points
or lines or planes which possess they properties of the Hexagram.
That families of points endowed with these properties exist, both in a
plane and in space, is & fact that should be recognized at the outset
of descriptive geometry. Just as from the axioms of three-dimensional
geometry we deduce the mnecessity of the existence of homologons
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tmangles from considering the figure formed by five points in space,

so here from the axioms of geometry of four dimensions we have con-
‘sidered the nature and properties of a Hexastigm and its transversals
in space of four dimensions, and infer that in space of three or two

dimensions families of points must exist possessing the long series of

N
[

p’roperties which we have classed together under the title Veronese’s Pro-
pertms of Pascal’s. Hexagram ¥)

ng 8 College, Ca.mbndge, Feb. 1, 1899.

% Cf. Quarterly Jowrnal of Pure and Applied Mathematics, Vol. XXXI,

"pp-125—160 (1899).
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